
Future Technology Devices International Ltd.

User Manual

AN_151

Vinculum II User Guide

This provides information and examples on using the Vinculum II
Toolchain, Firmware, Libraries and Sample code.

Document Reference No.: FT_000289

Version 2.0.0

Issue Date: 2011-05-08

Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

© 2012 Future Technology Devices International Ltd.

Table of Contents

..121 Introduction

..132 Getting Started Guide

..132.1 Introduction

..132.2 Overview

..132.3 Building Your First Application

..192.4 Writing 'Hello World' Application

..272.5 Writing an Application

..332.6 Code Listing

..393 Toolchain

..393.1 Toolchain Basics

..393.2 VinC Compiler

..403.2.1 Compiler Command Line Options

..403.2.1.1 Compiler File Type

..403.2.1.2 Compile Stage Selection

..413.2.1.3 Compiler Output

..413.2.1.4 Compiler Information Options

..423.2.1.5 Compile Time Options

..423.2.1.6 Preprocessing Options

..423.2.1.7 Linker Options

..423.2.2 Data Types

..433.2.2.1 Type Qualifiers

..443.2.2.2 Storage Type Specifiers

..443.2.2.3 Type Specifiers

..483.2.2.4 Data Conversion References

..493.2.3 Special VNC2 Reference

..493.2.3.1 ANSI C Feature Support Summary

..503.2.3.2 C Language Restrictions

..513.2.3.3 Special Features

..523.2.3.4 Function Call

..543.2.3.5 Architecture Issues

..543.2.3.6 Considerations of local vs global variables

..543.2.3.7 String Literals

..553.2.3.8 Sequence Points

..553.2.4 Error reference

..573.2.4.1 Examples for General Errors

..583.2.4.2 Examples for Syntax Error Codes

..593.2.4.3 Examples for General Syntax Error Codes

..603.2.4.4 Examples for Conditional Statement Error Codes

..623.2.4.5 Examples for Storage Classes Error Codes

..643.2.4.6 Examples for Declaration Error Codes

..663.2.4.7 Examples for Constant Range Error Codes

..673.2.4.8 Examples for Constant Error Codes

..683.2.4.9 Examples for Variable Error Codes

..683.2.4.10 Examples for Array Error Codes

..683.2.4.11 Examples for Structure Union Error Codes

..693.2.4.12 Examples for Initialisation Error Codes

..703.2.4.13 Examples for Function Error Codes

..703.2.4.14 Examples for Pointer Error Codes

..733.2.4.15 Examples for Bitfield Error Codes

..743.2.5 Pre-processor

..743.2.5.1 Pre-processor Directives

..763.2.5.2 Error reference

..813.3 VinAsm Assembler

..813.3.1 Assembler Command Line Options

..813.3.2 Assembly Language

..813.3.2.1 Lexical Conventions

..823.3.3 Assembler Directives

..833.3.3.1 Data Directives

..883.3.3.2 Debugger Directives

..983.3.3.3 End Directive

..993.3.3.4 File Inclusion Directive

..993.3.3.5 Location Control Directives

..1013.3.3.6 Symbol Declaration Directives

..1033.3.4 Machine Instructions

..1033.3.4.1 CPU General Instructions

..1053.3.4.2 CPU Stack Operation Instructions

..1083.3.4.3 CPU Memory Operation Instructions

..1093.3.4.4 CPU Bitwise Shift Operation Instructions

..1143.3.4.5 CPU Logic Operation Instructions

..1173.3.4.6 CPU Arithmetic Operation Codes

..1233.3.4.7 CPU Bitwise Operation Instructions

..1243.3.4.8 CPU I/O Operation Instructions

..1263.3.4.9 CPU Comparison Instructions

..1263.3.4.10 CPU Program Flow Instructions

..1303.3.5 Error Reference

..1313.4 VinL Linker

..1323.4.1 Linker Command Line Options

..1333.4.2 Memory and Segment

..1343.4.3 Map File

..1353.4.4 Archive File

..1363.4.5 Error Reference

..1383.4.6 Special VNC2 Reference

..1393.5 VinIDE

..1393.5.1 About VinIDE

..1403.5.2 The User Interface

..1403.5.2.1 The Tabbed Toolbar

..1423.5.2.2 The Source Code Editor

..1423.5.2.3 The Project Manager

..1433.5.2.4 The Messages Window

..1433.5.2.5 The Watchlist Window

..1443.5.2.6 The Memory Window

..1453.5.2.7 The Breakpoint Window

..1453.5.2.8 Managing the Panels

..1493.5.3 Using VinIDE

..1493.5.3.1 Application Wizard

..1583.5.3.2 Project/File Handling

..1703.5.3.3 Building a project

..1743.5.3.4 Debugging a project

..1773.5.3.5 Project Options

..1843.5.3.6 The IDE Options

..1913.5.3.7 Plugins

..1943.5.3.8 Keyboard Shortcuts

..1953.6 VinPrg Programmer

..1953.6.1 Programmer Command Line Options

..1963.7 VinUser Customiser

..1963.7.1 Customiser Command Line Options

..1974 Firmware

..1974.1 VOS Kernel

..1984.1.1 VOS Definitions

..1984.1.2 Kernel Configuration

..1994.1.2.1 vos_init()

..1994.1.2.2 vos_set_idle_thread_tcb_size()

..2004.1.3 Thread Creation

..2004.1.3.1 vos_create_thread()

..2014.1.3.2 vos_create_thread_ex()

..2024.1.4 Kernel Scheduler

..2024.1.4.1 vos_start_scheduler()

..2024.1.4.2 vos_delay_msecs()

..2034.1.4.3 vos_delay_cancel()

..2034.1.5 Mutexes

..2054.1.5.1 vos_init_mutex()

..2054.1.5.2 vos_lock_mutex()

..2064.1.5.3 vos_trylock_mutex()

..2064.1.5.4 vos_unlock_mutex()

..2064.1.5.5 vos_get_priority_ceiling() Advanced

..2074.1.5.6 vos_set_priority_ceiling() Advanced

..2074.1.6 Semaphores

..2084.1.6.1 vos_init_semaphore()

..2094.1.6.2 vos_wait_semaphore()

..2094.1.6.3 vos_wait_semaphore_ex()

..2104.1.6.4 vos_signal_semaphore()

..2114.1.6.5 vos_signal_semaphore_from_isr()

..2114.1.7 Condition Variables

..2134.1.7.1 vos_init_cond_var()

..2134.1.7.2 vos_wait_cond_var()

..2144.1.7.3 vos_signal_cond_var()

..2144.1.8 Diagnostics

..2154.1.8.1 vos_stack_usage()

..2154.1.8.2 vos_start_profiler()

..2164.1.8.3 vos_stop_profiler()

..2164.1.8.4 vos_get_profile()

..2174.1.8.5 vos_get_idle_thread_tcb()

..2174.1.8.6 CPU Usage Example

..2184.1.9 Critical Sections

..2184.1.10 Device Manager

..2204.1.10.1 Driver Initialisation

..2224.1.10.2 Driver Operation

..2254.1.11 Hardware Information and Control

..2254.1.11.1 vos_set_clock_frequency() and vos_get_clock_frequency()

..2254.1.11.2 vos_get_package_type()

..2264.1.11.3 vos_get_chip_revision()

..2264.1.11.4 vos_power_down()

..2264.1.11.5 vos_halt_cpu()

..2274.1.11.6 vos_reset_vnc2()

..2274.1.12 Watchdog Timer

..2274.1.12.1 vos_wdt_enable()

..2284.1.12.2 vos_wdt_clear()

..2284.1.13 Kernel Services

..2294.1.13.1 DMA Service

..2344.1.13.2 IOMux Service

..2374.1.13.3 GPIO Service

..2444.1.13.4 Memory Management

..2464.2 FTDI Drivers

..2464.2.1 Hardware Device Drivers

..2464.2.1.1 UART, SPI and FIFO Drivers

..2664.2.1.2 USB Host Driver

..3074.2.1.3 USB Slave Driver

..3234.2.1.4 GPIO Driver

..3354.2.1.5 Timer Driver

..3444.2.1.6 PWM Driver

..3534.2.2 Layered Drivers

..3534.2.2.1 Mass Storage Interface

..3564.2.2.2 USB Host Class Drivers

..4004.2.2.3 USB Slave Class Drivers

..4044.2.2.4 SPI Peripheral Drivers

..4234.2.2.5 Ethernet Driver

..4384.2.2.6 File Systems

..4954.2.2.7 APIs

..4994.3 FTDI Libraries

..4994.3.1 ctype

..5004.3.1.1 isalnum

..5004.3.1.2 isalpha

..5004.3.1.3 iscntrl

..5014.3.1.4 isdigit

..5014.3.1.5 isgraph

..5014.3.1.6 islower

..5024.3.1.7 isprint

..5024.3.1.8 ispunct

..5024.3.1.9 isspace

..5034.3.1.10 isupper

..5034.3.1.11 isxdigit

..5034.3.2 stdio

..5054.3.2.1 fsAttach

..5064.3.2.2 stdioAttach

..5064.3.2.3 stdinAttach

..5064.3.2.4 stdoutAttach

..5074.3.2.5 stderrAttach

..5074.3.2.6 printf

..5084.3.2.7 fopen

..5094.3.2.8 fread

..5094.3.2.9 fwrite

..5104.3.2.10 fclose

..5114.3.2.11 fflush

..5114.3.2.12 feof

..5114.3.2.13 ftell

..5124.3.2.14 fprintf

..5124.3.2.15 stdout

..5134.3.2.16 stdin

..5134.3.2.17 stderr

..5134.3.2.18 sprintf

..5144.3.2.19 remove

..5144.3.2.20 rename

..5154.3.3 unistd

..5164.3.3.1 chdir

..5164.3.4 stdlib

..5174.3.4.1 abs

..5174.3.4.2 strtol

..5174.3.4.3 atol

..5184.3.4.4 atoi

..5184.3.4.5 malloc

..5184.3.4.6 calloc

..5194.3.4.7 free

..5194.3.5 string

..5204.3.5.1 memcpy

..5204.3.5.2 memset

..5214.3.5.3 strcmp

..5214.3.5.4 strncmp

..5224.3.5.5 strcpy

..5224.3.5.6 strncpy

..5224.3.5.7 strcat

..5234.3.5.8 strlen

..5234.3.6 errno

..5234.3.6.1 errno

..5255 Sample Firmware Applications

..5255.1 Sample Firmware Overview

..5255.2 General Samples

..5255.2.1 Template Sample

..5265.2.2 GPIOKitt Sample

..5275.2.3 PWMBreathe Sample

..5285.2.4 Philosophers Sample

..5295.2.5 Runtime Sample

..5315.2.6 HelloWorld Sample

..5325.2.7 RTC Sample

..5335.3 USB Host Samples

..5335.3.1 StillImageApp Sample

..5355.3.2 USBHostGeneric Sample

..5365.3.3 USBHostGPSLogger Sample

..5375.3.4 USBHostHID Sample

..5385.3.5 USBHostHID2 Sample

..5405.3.6 USBMic Sample

..5415.4 USB Slave Samples

..5415.4.1 USBSlaveFT232App Sample

..5425.5 Firmware Samples

..5425.5.1 VNC1L Firmware

..5425.5.1.1 V2DAP Firmware

..5435.5.1.2 V2DPS Firmware

..5456 Vinco Libraries

..5456.1 Before using the Vinco libraries

..5456.1.1 Data types in Vinco libraries

..5466.1.2 Vinco Application Wizard

..5486.1.3 main.c and vinco.h

..5486.1.4 Vinco sketch format

..5496.2 Digital I/O Library

..5506.2.1 pinMode()

..5506.2.2 digitalWrite()

..5506.2.3 digitalRead()

..5516.2.4 Port Access APIs

..5516.2.4.1 portMode()

..5516.2.4.2 portWrite()

..5526.2.4.3 portRead()

..5526.2.5 Using on-board LEDs

..5536.3 Time Library

..5536.3.1 millis()

..5536.3.2 micros()

..5536.3.3 delay()

..5546.3.4 delayMicroseconds48Mhz()

..5546.3.5 delayMicroseconds24Mhz()

..5556.3.6 delayMicroseconds12Mhz()

..5556.4 Serial Library

..5556.4.1 begin()

..5556.4.2 end()

..5566.4.3 available()

..5566.4.4 read()

..5576.4.5 write()

..5576.4.6 flush()

..5576.4.7 print()

..5586.4.8 println()

..5586.4.9 printstr()

..5596.4.10 Notes on using the Serial library

..5596.4.10.1 Porting Guide

..5596.4.10.2 Getting the setup ready

..5606.5 Interrupts Library

..5606.5.1 interrupts()

..5616.5.2 noInterrupts()

..5616.5.3 attachInterrupt()

..5626.5.4 detachInterrupt()

..5626.6 Analog Library

..5626.6.1 analogRead()

..5626.6.2 analogWrite()

..5636.6.3 Notes on usage of the Analog I/O library

..5636.6.3.1 Reference voltage

..5636.6.3.2 ADC converter resolution

..5636.6.3.3 PWM output

..5636.7 Ethernet Library

..5636.7.1 Ethernet core functions

..5636.7.1.1 beginMacIp()

..5646.7.1.2 beginMacIpGw()

..5646.7.1.3 beginMacIpGwSn()

..5656.7.2 Server functions

..5656.7.2.1 begin()

..5656.7.2.2 available()

..5666.7.2.3 writeBuf()

..5666.7.2.4 writeStr()

..5666.7.2.5 writeByte()

..5676.7.3 Client functions

..5676.7.3.1 clientIp()

..5676.7.3.2 connect()

..5686.7.3.3 connected()

..5686.7.3.4 writeBuf()

..5696.7.3.5 writeStr()

..5696.7.3.6 writeByte()

..5706.7.3.7 available()

..5706.7.3.8 read()

..5716.7.3.9 flush()

..5716.7.3.10 stop()

..5726.7.4 Udp functions

..5726.7.4.1 begin()

..5726.7.4.2 send()

..5736.7.4.3 sendString()

..5736.7.4.4 read()

..5746.7.4.5 available()

..5746.7.5 Porting guide from Arduino Ethernet library

..5746.7.5.1 TCP client

..5756.7.5.2 TCP server

..5756.8 MP3 Library

..5756.8.1 begin()

..5756.8.2 setVolume()

..5756.8.3 setBass()

..5766.8.4 setTreble()

..5766.8.5 send()

..5776.8.6 sent()

..5776.8.7 cancel()

..5776.8.8 softReset()

..5786.8.9 hardReset()

..5786.9 USB Host Printer Library

..5786.9.1 open()

..5786.9.2 getCapability()

..5796.9.3 getPortStatus()

..5796.9.4 softReset()

..5806.9.5 write()

..5806.9.6 close()

..5816.10 USB Host FT232 Library

..5816.10.1 open()

..5816.10.2 reset()

..5826.10.3 getRXStatus()

..5826.10.4 getTXStatus()

..5826.10.5 getModemStatus()

..5836.10.6 getLineStatus()

..5836.10.7 setBaudRate()

..5846.10.8 setFlowControl()

..5846.10.9 setDataBits()

..5856.10.10 setStopBits()

..5856.10.11 setParity()

..5866.10.12 setRTS()

..5866.10.13 clearRTS()

..5876.10.14 setDTR()

..5876.10.15 clearDTR()

..5886.10.16 setBreakOn()

..5886.10.17 setBreakOff()

..5896.10.18 setXON()

..5896.10.19 setXOFF()

..5896.10.20 setLatency()

..5906.10.21 getLatency()

..5906.10.22 setBitMode()

..5916.10.23 getBitMode()

..5916.10.24 readEEPROM()

..5926.10.25 writeEEPROM()

..5926.10.26 startPoll()

..5936.10.27 stopPoll()

..5936.10.28 write()

..5946.10.29 read()

..5946.10.30 close()

..5956.11 USBSlaveFT232

..5956.11.1 open()

..5956.11.2 getRXStatus()

..5956.11.3 setLatency()

..5966.11.4 setDescriptors()

..5976.11.5 setOutTransferSize()

..5976.11.6 read()

..5986.11.7 write()

..5986.11.8 close()

..5996.12 USB Host HID Library

..5996.12.1 open()

..5996.12.2 getDescriptor()

..6006.12.3 getReport()

..6006.12.4 setReport()

..6016.12.5 getProtocol()

..6016.12.6 setProtocol()

..6026.12.7 getIdle()

..6026.12.8 setIdle()

..6036.12.9 read()

..6036.12.10 close()

..6047 Contact Information

..6068 Revision History

Copyright © 2012 Future Technology Devices International Ltd. 12

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

1 Introduction

Getting Started Guide

Vinculum II Toolchain - Compilation and development tools for Vinculum II.

o VinC Compiler

o VinAsm Assembler

o VinL Linker

o VinIDE Integrated Development Environment

Firmware - RTOS, device drivers, runtime libraries for Vinculum II.

o VOS Kernel

o FTDI Drivers

o FTDI Libraries

Sample Firmware Overview

Copyright © 2012 Future Technology Devices International Ltd. 13

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

2 Getting Started Guide

2.1 Introduction

The scope of this document is to provide an introduction to using the VNC2 toolchain. This document
is intended for people who have successfully installed the VNC2 toolchain and is provided as a
getting started guide for first time users.

FTDI provide a number of sample applications with the toolchain installation, these samples are
designed to familiarise users with the supplied FTDI drivers, libraries and development environment.
It is recommend that to follow this tutorial more easily all files installed during the installation are
kept in their default location as per the installation wizard.

All code samples in this document are provided for illustration purposes only. They are not
guaranteed or supported by FTDI.

2.2 Overview

The intention of this document is to give novice users of the Vinculum-II software development
toolchain the knowledge to build and run their first sample application and to then use this
knowledge to go onto write and build a first application from scratch. It does this using a short
tutorial.

The tutorial firstly focuses on the Kitt sample, provided along with the Vinculum-II toolchain, to
demonstrate: the opening of projects; building firmware for the VNC2; loading this firmware onto the
device; running the firmware on the VNC2 and finally using the debugger to step through code.
Secondly, it introduces writing an application from scratch based on the Hello World sample. This
demonstrates how to use FTDI supplied device drivers and outlines the general structure
applications may take.

2.3 Building Your First Application

Installing the VNC2 toolchain (using the default settings) results in the toolchain being installed
within the Program Files/FTDI/Vinculum II Toolchain directory on the PC’s local hard disk; the
installer creates a start menu shortcut, again under the FTDI/Vinculum II Toolchain folder
heading. The VNC2 IDE is located within either of these two folders; to launch the application double
click on Vinculum II IDE icon.

Opening the Sample Project

This is an overview of the IDE GUI, the layout may not match exactly Figure 1, however, this can be
easily modified using the built-in docking manager.

Copyright © 2012 Future Technology Devices International Ltd. 14

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 1

The tabbed tool strip running along the top of the screen gives access to the menu and sub menu
items within the IDE.

Within the File tab, as above, notice the Project subcategory, click on the Open button. By following
the default settings within the installation wizard the FTDI provided samples are saved within the My
Documents folder. Using the project dialog box, browse to My Documents and find the folder FTDI/
Firmware/Samples/ReleaseVersion/General. Within this is a folder called GPIOKitt containing a file
GPIOKitt.vproj (vproj is the file extension used by all VNC2 project files) double click this file to
launch it within the IDE.

Building the Application

Notice that when an application is opened within the IDE the Project Manager window now contains
all the files relevant to that project. If the Project Manager window is not visible go back to the
tabbed tool strip, along to view and make sure that the Project Manager box is checked (Figure 2).
IDE panels can be dragged and docked anywhere on the screen using the built-in docking manager,
simply click and hold the title bar of a panel to free it and then drag it to the desired area of the
screen.

Files within this project can now be opened within the editor window by double clicking them; the
editor window allows multiple files to be open concurrently. The archive files under the Libraries
folder contain FTDI supplied drivers and VOS Kernel Services, these files cannot be opened or
edited.

Figure 2

To build the sample Kitt application: go to the tabbed tool strip and along to the Build tab. In the left
hand side of the panel is a button called Build, this will generate the ROM file (firmware) that can be
programmed into the VNC2 IC. Note that under the Build Configuration sub-category the project is
set in Debug mode; this is important at this stage as it will allow debugging of source code after the
ROM image has been loaded into the VNC2 device.

Copyright © 2012 Future Technology Devices International Ltd. 15

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

After clicking Build the IDE will attempt to compile, assemble and link the source code into a format
that can be loaded into the VNC2. If the source code within kitt.c hasn’t been altered there should
be no compilation errors, meaning the Kitt application should build first time.

 The outcome from a build attempt is displayed within the Messages Window at the bottom of the
screen. The last line within the Messages Window indicating that there have been 0 errors from the
build shows that the IDE has successfully created the ROM file.

[VinL.exe] : 0 errors, 0 warnings and 0 informational messages

Flashing VNC2

The next step is to program the ROM file from the above build process into the VNC2 flash memory,
but first connect the VNC2 to the host PC (Figure 3). This demonstration uses the V2EVAL with the
64 pin QFN daughter card installed. The debugger port is connected to the host PC via the blue USB
cable (shown at the top of figure 3). The power switch for the device is located just below the black
power supply socket in the top left corner of the screen; in this mode, this device is self powered
and therefore does not require an external power supply to operate. When the V2EVAL board is
connected, the host PC may attempt to install FTDI drivers for the FT4232H connected to the
debugger port.

Copyright © 2012 Future Technology Devices International Ltd. 16

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 3

After connecting the V2EVAL board as shown in Figure 3 ,open up the IDE and select the Debug tab
within the tool strip Selecting the drop-down menu within the Debugger Interface subcategory
initiates the IDE to search for connected devices and, as can be seen below, automatically selects
the debugger interface of the V2EVAL board. When a debugger interface is selected the Flash,
Verify, Start and Reset buttons also become active. To program the flash memory of the VNC2 select
Flash from the Debug tab, a dialog box appears showing the Kitt.rom image file that was built
earlier, select this file and press open.

The IDE attempts to program the VNC2 flash, all relevant information will be shown in the Message
Window at the bottom of the screen.

Running the Application

To run the Kitt sample, press the start button in the Debug tab. The four LEDs located in the bottom
left hand corner of the V2EVAL board should now be sequentially flashing signifying that the device
is running correctly. The Halt and Stop buttons become active only if the ROM file loaded into the
VNC2 has been built in debug mode. Halt can be used to suspend execution at the current line

Copyright © 2012 Future Technology Devices International Ltd. 17

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

within the disassembly file. Stop can be used to halt executing and stop the firmware on the VNC2
executing.

Debugging the Application

The debugger interface supplied by FTDI allows for source code debugging at C and assembly level;
this tutorial illustrates using the C level debugging.

The IDE allows breakpoints to be added to the C source, in the below diagram (Figure 4) a
breakpoint has been added to the source code at line 82. A breakpoint is added by clicking the
desired line number in the left hand side gutter of the screen. Breakpoints can be placed on lines
with no code, for example lines with comments, but these are grayed out when the debugger starts
and will not be hit. VNC2 supports 3 breakpoints being set concurrently; any extra breakpoints are
deselected within the Breakpoint List window and are grayed out within the editor.

Copyright © 2012 Future Technology Devices International Ltd. 18

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Copyright © 2012 Future Technology Devices International Ltd. 19

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 4

To hit a breakpoint press Start within the debug menu. The application runs to this breakpoint and
execution from the VNC2 stops; this allows for lines of code to be single stepped using the Step
control panel within the Debug menu.

Individual variables within the source code can also be added to a watch list; this allows for the
value of certain variables to be monitored during execution of the source code. To add a watch bring
up the Watch window from the View tab within the tool strip. Right click within the Watch List and
select Add Watch; enter the name of the variable to be monitored and press Add Watch.
Alternatively, select the variable you are interested in and either right click and choose Add Watch or
press Ctrl+W. Figure 5 illustrates the variable value added to a watch list. All watches that have
been added are displayed within the Watch List; a watch that has a value of undefined is either
outside the current scope of execution or is not defined within the current application. During single
stepping of code it is now possible to monitor changes within the value field of each variable to aid
with debugging.

Figure 5

2.4 Writing 'Hello World' Application

This section illustrates the creation of an application from scratch based upon the Hello World sample
provided by FTDI. Hello World is a simple application that connects to a USB flash drive, creates a
new text file on the drive and writes the string “Hello World” to this file. This project demonstrates
the main components of writing an application and how to use a selection of the provided drivers,
Kernel services and libraries.

Copyright © 2012 Future Technology Devices International Ltd. 20

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Creating a new Project

To create a new project, go to the File tab within the toolbar and click New under the Project tab
(see Figure below).

Alternatively, go to the circular Vinculum button and click New->New App Wizard Project

This pops up a AppWizard dialog box which allows for browsing to the project location and renaming
of the project and solution. It is necessary to complete the text boxes before clicking Finish.

Create a new project called HelloWorld as demonstrated within Figure 6.

Copyright © 2012 Future Technology Devices International Ltd. 21

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 6

Note: The project and solution names do not need to match. It is recommended that the Create Directory for
Project check box is selected; this creates a project directory containing the project and any subsequent files.

Click Next to select the module and package used. When moving the cursor over the module names, pictures
are displayed to facilitate your selection process. Note that when selecting a package, it is possible to select
more than one package at once. Select V2Eval Board and 64 Pin, and click Next. Here, you can select
Hardware Drivers, Layered Drivers and Runtime Libraries. You are not required to select any of the drivers or
libraries at this stage. By clicking Next, you are shown the evaluation board, which is there for you to
automate the coding process. It is possible to select certain drivers in the Drivers tab (e.g. GPIO Port A) and
then by clicking on the relevant pins (e.g. SW5 and LED5) appropriately customize them (e.g. SW5/Signal
Sense/Signal Input). This way you are asking the AppWizard to generate a source code for the functions you
need (more on the IOMux feature in the following chapter). In the next two steps, you setup the Kernel and
Threads. Click Finish.

The result of creating a new project in the Project Manager panel is illustrated in Figure 7 which shows a new
project called HelloWorld which has been created.

Copyright © 2012 Future Technology Devices International Ltd. 22

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 7

Saving a Project

To save a project, use the Save As button within the File tab.

Alternatively, go to the Project Manager and right click “HelloWorld” ->Save As.

Copyright © 2012 Future Technology Devices International Ltd. 23

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

This will result in the Save Project As dialog box (Figure 8) appearing.

Figure 8

Select a location and filename for saving the project.

Copyright © 2012 Future Technology Devices International Ltd. 24

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Adding New Files to a Project

To add a new file to the HelloWorld project, go to the File tab within the toolbar and click New in the
File group.

The New File pop-up allows different types of file to be added to a project. Firstly add a new C File
which will contain the main body of code for the application. Select C File in the New File pop-up and
press Add. Repeat this to add another new file to the project, this time a Header File.

Notice that within the Project Manager window, as shown in Figure 9, there are now two new files
under the project heading. To rename both files: right click on File.c within the Project Manager and
select Rename. The IDE prompts to save this file first before renaming it, click Yes to confirm this.
Within the save dialog box rename this file as HelloWorld.c and click OK. Repeat these steps for the
header file in the project, calling it HelloWorld.h.

Copyright © 2012 Future Technology Devices International Ltd. 25

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 9

Adding Existing Files to a Project

To add an existing file to the “HelloWorld” project, go to the File tab of the toolbar and click Add in
File tab group. The open dialog (Figure 10) allows for different file types(C, ASM, Header or Text) to
be added from this project or any other project. It is also possible to add multiple files by holding the
CTRL key while clicking on each of the files required to be added.

Alternatively, go to the Project Manager and right click “HelloWorld” project ->Add

Copyright © 2012 Future Technology Devices International Ltd. 26

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

To add a file click the Open button. All added files are added to the Project Manager window as
illustrated in Figure 11.

Figure 10

Copyright © 2012 Future Technology Devices International Ltd. 27

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 11

2.5 Writing an Application

In this section, an application is written which writes a line of text to a file on a disk. The listing is
available in the Getting Started Code Listing topic and it is in the samples directory under General/
HelloWorld.

Header File

To write some example code for this application starting with the header file: double click HelloWorld.
h within the Project Manager to open this file in the IDE editor. Header files contain forward
declarations of functions, constant values and any other global variable declarations that are shared
throughout the application. Although it is not strictly necessary to use a header file within this
project it is good programming practice to get into the habit of using them, especially when dealing
with more complicated projects than the HelloWorld application.

The first thing to define within the header is the size of stack memory that the application thread is
going to need. Details of this will be explained further when it comes to creating a thread within the
application.

Paste the following code fragment into the header file:

#define SIZEOF_FIRMWARE_TASK_MEMORY 0x1000

Next decide the number of device interfaces that are used within the application. The HelloWorld app
requires: a USB Host driver to connect to the USB flash drive; a BOMS driver and FAT file system
driver to allow communication to the flash disc and also a GPIO driver allowing for visual feedback to

Copyright © 2012 Future Technology Devices International Ltd. 28

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

the user using the LEDs on the V2EVAL board. When initializing each device they must have a unique
identifier that is used within the Kernel’s device manager. As well as this the number of devices used
within the application must be explicitly specified.

Again, copy and paste the following code fragment into the .h file.

#define NUMBER_OF_DEVICES 4

#define VOS_DEV_USB_HOST 0

#define VOS_DEV_BOMS 1

#define VOS_DEV_GPIO 2

#define VOS_DEV_FAT 3

Lastly, add a forward declaration for the application thread:

void firmware(void);

The header file should now match closely the code shown in Figure 12.

Figure 12

Other definitions of LED combinations are found in the listing of the header file in the Getting Started
Code Listing topic.

FTDI Libraries

With VNC2, all applications integrate with FTDI provided libraries that contain VOS Kernel Services,
device drivers and runtime libraries. Kernel Services provide all the data structures and primitives
that an application uses, as well as providing control throughout the lifetime of the application.

The Device Manager defines a standard API for device drivers. All devices are accessed using this
standard API to make application development easier. Device Manager is the interface between user
applications and Kernel Services. Runtime libraries contain functions which are common to most C
language implementations, for example string and standard IO.

The Hello World application requires a selection of Runtime Libraries, FTDI drivers as well as Kernel
Services to run. These are provided in the form of archive files which come with the VNC2 toolchain
installation. To utilize the provided libraries they must be included in the application. Each archive file
has a corresponding header file that defines its API, providing information on functions and data
structures that are contained within the archive files.

The Hello World application requires the following device drivers: USBHost acting as an interface to
the USB drive; the BOMS driver to communicate with a mass storage device; the FAT driver to
communicate with the device file structure and the GPIO driver which allows for visual feedback using
the LEDs. The string runtime library which contains string manipulation functions and stdio to provide
file I/O functions also needs inclusion. Finally Kernel Services, which provide overall control of the
device drivers, need to be added. As well as adding the archive files the corresponding header files
require inclusion.

3.4.2.1 Adding Library Files

To add Library Archive Files to the HelloWorld project, go to the Build tab of the toolbar and click
Libraries in the FTDI Libraries tab group.

Copyright © 2012 Future Technology Devices International Ltd. 29

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 13 shows the Project Library dialog box which appears. To add a library, click the desired
archive file in the left hand pane and press the Add button. The list of added libraries is displayed
within the right hand pane.

Figure 13

The list of archive files that are required for the HelloWorld project are: Kernel.a, BOMS.a, fat.a,
usbhost.a, gpio.a, stdio.a and string.a.

The corresponding header files must also be added to the project. This is achieved by going to the
Build tab and selecting Header Files. Adding header files is done in the same manner as library files.
The header files required for HelloWorld are: vos.h, USBHost.h, USB.h, BOMS.h, Fat.h, GPIO.h, stdio.h
and string.h.

Application Code

This section illustrates writing the main application code. A full listing is in the Getting Started Code
Listing topic.

There are three distinct parts to a VNC2 application.

The first of these is the includes section and global definitions; this is where declarations of the
Kernel services, runtime libraries and driver header files that are used within the application are.

Copyright © 2012 Future Technology Devices International Ltd. 30

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The second section is the main function; this is the entry point into the application and must only be
defined once. Within this function most of the setup and IOMux routines, as well as initializing
application threads, are taken care of.

The final component is user threads; these contain the main functionality of the system. An
application can have any number of user threads, however in this simple example there is only one.
In our application we will only have one thread. When it is created we require to keep a handle to
that thread. This is of type vos_tcb_t and defined as a global.

vos_tcb_t *tcbFirmware;

Driver Includes and Handles

The head of the HelloWorld.c file must contain include statements for all the header files, Kernel,
drivers and runtime libraries that are used. The files are the same as the header files that were
added during the FTDI libraries section of this tutorial.

#include "vos.h"

#include "USBHost.h"

#include "USB.h"

#include "BOMS.h"

#include "FAT.h"

#include "GPIO.h"

#include "string.h"

#include "helloWorld.h"

As well as header files there must also be declarations for any global variables that are to be used
throughout the application. When an FTDI driver is opened Device Manager returns a unique handle
for that device, each handle is of type VOS_HANDLE, declared within devman.h. These handles are
used throughout the application to uniquely identify each device so are therefore declared as global
variables.

VOS_HANDLE hUsb,

 hBOMS,

 hFAT,

 hGpio;

Main Function

The main function is the entry point each time the application is run. Within this routine are most of
the initialization routines which are run before starting the application threads.

To begin, declare a context for the USB Host and GPIO drivers, the context is used later to configure
the device before opening it.

void main(void)

{

usbhost_context_t usb_ctx;

gpio_context_t gpioCtx;

Next, initialize the Kernel for the number of devices being used, the time slice for each thread
(Quantum) and the interval for timer interrupts (tick). The NUMBER_OF_DEVICES comes from the
header file where it was explicitly set to 3; when writing a system that requires more devices it is
important to remember to increase this number otherwise any extra devices are not registered with
the Kernel and Device Manager. The default clock frequency for the CPU is 48MHz;this has been
added for completeness.

vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

VNC2 features several peripherals, however it is not possible to route all of these signals
concurrently. To allow signals to be routed to their required pins VNC2 comes with an I/O Multiplexer
(IOMux) which provides a simple API to allow signals to be routed to specific pins. FTDI provides an
IOMux configuration utility as part of the installation, giving a visual representation of the pins to aid
with routing signals. The utility will generate C code that can be cut-n-paste straight into any
application.

The IOMux code used to routed to connect to a V2EVAL board allows routing to 64, 48 or 32 pin
devices. The code here is edited for clarity, refer to Getting Started Code Listing for the full listing.

Copyright © 2012 Future Technology Devices International Ltd. 31

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (vos_get_package_type() == VINCULUM_II_64_PIN)

{

// GPIO port A bit 1 to pin 12

vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //LED3

...

vos_iomux_define_input(42,IOMUX_IN_UART_CTS_N); //UART CTS#

}

else if (vos_get_package_type() == VINCULUM_II_48_PIN)

{

// GPIO port A bit 1 to pin 12

vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //LED3

...

vos_iomux_define_input(34,IOMUX_IN_UART_CTS_N); //UART CTS#

}

else // VINCULUM_II_32_PIN

{

// GPIO port A bit 1 to pin 12

vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //LED3

...

vos_iomux_define_input(26,IOMUX_IN_UART_CTS_N); //UART CTS#

}

Next, configure devices and open a handle to each of these devices. VNC2 has two USB Host
interfaces available. HelloWorld configures the second USB Host to connect to the flash drive. Within
the usbhost_context_t, declare the maximum number of interfaces to be enumerated. When calling
the usbhost_init() function, specify the device number to register with Device Manager. In this
example it is only necessary to register the second USB Host interface. Therefore pass -1 as the first
parameter and the device number for our USB Host (from the header file) as the second parameter.
The third parameter is USB host context.

// Initialize the USBHost driver and open a handle to the device...

usb_ctx.if_count = 4; // Use a max of 4 USB interfaces

usbhost_init(-1, VOS_DEV_USB_HOST, &usb_ctx);

To initialize the GPIO, the port number to be used (A,B,C,D or E) is passed with the device context
when calling the gpio_init() function. This is illustrated as follows:

// Initialize the GPIO driver and open a handle to the device...

gpioCtx.port_identifier = GPIO_PORT_A;

gpio_init(VOS_DEV_GPIO,&gpioCtx);

The BOMS Driver and FAT File System Driver are simpler to call and do not require a context to
initialize the device, again they pass the device number to Device Manager to register the driver
when boms_init() and fatdrv_init() are called.

// Initialize the BOMS driver and open a handle to the device...

boms_init(VOS_DEV_BOMS);

fatdrv_init(VOS_DEV_FAT);

All user application threads must be declared within the main routine. When creating a thread, use
vos_create_thread() and pass a pointer to the thread function. In this example a forward
declaration for a thread called firmware was created in the header file and this is the name that is
passed into vos_create_thread().

The first parameter in vos_create_thread() is the thread priority; this value determines the priority of
the thread in relation to other application threads. The thread priority must be a value between 1
and 31 with 1 being the lowest priority thread.

The SIZEOF_FIRMWARE_TASK_MEMORY, as defined within the header file, is the amount of stack
usage that is allocated to the application thread. The stack size required for a thread depends on its
complexity, for this application a stack size of 0x1000 will be more than adequate.

The last parameter is the arg size field; vos_create_thread() allows for any number of extra
parameters to be passed into the function. The arg size field must reflect the total size of the
arguments passed into the function. In this example the thread has no arguments and therefore arg
size is zero.

// Create our application thread here...

vos_create_thread(29, SIZEOF_FIRMWARE_TASK_MEMORY, firmware, 0);

Copyright © 2012 Future Technology Devices International Ltd. 32

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The last step within the main routine is to call the Kernel Scheduler to start the application threads.
The call to vos_start_scheduler() is an indication that setup and initialization is finished, and control
passes from main to the application threads.

// Start the scheduler to kick off our thread...

vos_start_scheduler();

Application Thread

This is the body of the application and contains firmware code to control the VNC2. To start, declare
the thread function and local variables

void firmware(void)

{

unsigned char *tx_buf = "Hello World! \r\n";

unsigned char connectstate;

unsigned char status;

// USB host variables

usbhost_device_handle *ifDev;

usbhost_ioctl_cb_t hc_iocb;

usbhost_ioctl_cb_class_t hc_iocb_class;

// BOMS device variables

msi_ioctl_cb_t boms_iocb;

boms_ioctl_cb_attach_t boms_att;

// FAT file system variables

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_attach_t fat_att;

FILE *file;

// GPIO variables

gpio_ioctl_cb_t gpio_iocb;

unsigned char leds;

Firstly open the USB Host controller driver. The function vos_dev_open() requires the device number
of the USB host driver and returns a handle to the instance of the driver.

hUsb = vos_dev_open(VOS_DEV_USB_HOST);

Next, configure the GPIO driver so that all signals are set to output, this enables feedback to be
shown through the LEDs. Control requests to drivers are performed through I/O control calls where
the call to be performed is specified and any extra data required by the call is passed in.

hGpio = vos_dev_open(VOS_DEV_GPIO);

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

gpio_iocb.value = 0xff; // set all as output

vos_dev_ioctl(hGpio, &gpio_iocb);

To determine whether there is a USB device connected to USB Host 2, use the
VOS_IOCTL_USBHOST_GET_CONNECT_STATE IOCTL function. When a device is detected, information
is relayed back to the user via the LEDs.

do

{

//wait for enumeration to complete

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_CONNECT_STATE;

hc_iocb.get = &connectstate;

vos_dev_ioctl(hUsb, &hc_iocb);

if (connectstate == PORT_STATE_ENUMERATED)

{

 // connected to USB device and enumerated

 leds = 0xAA; vos_dev_write(hGpio,&leds,1,NULL);

Now, use the VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS IOCTL to determine if the
connected device is a BOMS class device. The class, subclass and protocol of the device must also be
passed to this IOCTL. If the driver finds a device matching the BOMS flash disk then a handle is
returned in the get section of the IOCTL block.

// find BOMS class device

hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;

Copyright © 2012 Future Technology Devices International Ltd. 33

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;

hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

// user ioctl to find first hub device

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

hc_iocb.handle.dif = NULL;

hc_iocb.set = &hc_iocb_class;

hc_iocb.get = &ifDev;

vos_dev_ioctl(hUsb, &hc_iocb);

if(!ifDev)

{

 // We didn't manage to find a device matching the required class.

 break;

}

Using the ifDev handle as received from the previous IOCTL, attach the BOMS driver to the flash disc
using the BOMS MSI_IOCTL_BOMS_ATTACH IOCTL.

hBoms = vos_dev_open(VOS_DEV_BOMS);

// Attach BOMS driver to our USB Flash Disk

boms_att.hc_handle = hUsb;

boms_att.ifDev = ifDev;

boms_iocb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

boms_iocb.set = &boms_att;

boms_iocb.get = NULL;

status = vos_dev_ioctl(hBoms, &boms_iocb);

The FAT driver is required to match the file structure on BOMS devices and allow reading and writing
of files. Calling the FAT_IOCTL_FS_ATTACH will cause subsequent file system operations to be sent
to the BOMS disk.

hFat = vos_dev_open(VOS_DEV_FAT);

// Attach the FAT driver to the BOMS device

fat_ioctl.ioctl_code = FAT_IOCTL_FS_ATTACH;

fat_ioctl.set = &fat_att;

fat_att.boms_handle = hBoms;

fat_att.partition = 0;

status = vos_dev_ioctl(hFAT, &fat_ioctl);

Once the FAT file system and BOMS are attached then the stdio library can be initialised with the
fsAttach function.

fsAttach(hFAT);

The stdio library can now be used to access files on the disk.

Notice the use of the strlen function as defined within the string runtime library to calculate the
length of the Hello World buffer.

file = fopen("TEST.TXT", "a+");

fwrite(tx_buf, strlen(tx_buf), sizeof(char), file);

fclose(file);

Follow the instructions in Building Your First Application to build the project and flash the VNC2.

2.6 Code Listing

HelloWorld.h

/*

** HelloWorld.h

**

** Copyright © 2010 Future Devices International Limited

**

** C Header file for Vinculum II sample application

** Main module

**

** Author: FTDI

Copyright © 2012 Future Technology Devices International Ltd. 34

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

** Project: Vinculum II

** Module: Vinculum II Sample Applications

** Requires: VOS BOMS FAT USBHost GPIO STDIO

** Comments: Uses stdio to write files on flash disk

**

** History:

** 1 – Initial version

**

*/

#define SIZEOF_FIRMWARE_TASK_MEMORY 0x1000

#define NUMBER_OF_DEVICES 4

#define VOS_DEV_USB_HOST 0

#define VOS_DEV_BOMS 1

#define VOS_DEV_FAT 2

#define VOS_DEV_GPIO 3

#define LED0 0x02

#define LED1 0x04

#define LED2 0x20

#define LED3 0x40

HelloWorld.c

/*

** HelloWorld.c

**

** Copyright © 2010 Future Devices International Limited

**

** C Source file for Vinculum II sample application

** Main module

**

** Author: FTDI

** Project: Vinculum II

** Module: Vinculum II Sample Applications

** Requires: VOS BOMS FAT UART USBHost GPIO STDIO

** Comments: Uses stdio to write files on flash disk

**

** History:

** 1 – Initial version

**

*/

#include "vos.h"

#include "USBHost.h"

#include "USB.h"

#include "MSI.h"

#include "BOMS.h"

#include "FAT.h"

#include "GPIO.h"

#include "stdio.h"

#include "string.h"

#include "HelloWorld.h"

VOS_HANDLE hUsb,

 hBoms,

 hGpio,

 hFAT;

vos_tcb_t *tcbFirmware;

char *tx_buf = "Hello World! \n";

Copyright © 2012 Future Technology Devices International Ltd. 35

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

void firmware(void);

void main(void)

{

 // USB Host configuration context

 usbhost_context_t usb_ctx;

 // GPIO configuration context

 gpio_context_t gpioCtx;

 vos_init(10, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

 vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

 if (vos_get_package_type() == VINCULUM_II_64_PIN)

 {

 // GPIO port A bit 1 to pin 12

 vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //LED3

 // GPIO port A bit 2 to pin 13

 vos_iomux_define_output(13,IOMUX_OUT_GPIO_PORT_A_2); //LED4

 // GPIO port A bit 5 to pin 29

 vos_iomux_define_output(29,IOMUX_OUT_GPIO_PORT_A_5); //LED5

 // GPIO port A bit 6 to pin 31

 vos_iomux_define_output(31,IOMUX_OUT_GPIO_PORT_A_6); //LED6

 // UART to V2EVAL board pins

 vos_iomux_define_output(39,IOMUX_OUT_UART_TXD); //UART Tx

 vos_iomux_define_input(40,IOMUX_IN_UART_RXD); //UART Rx

 vos_iomux_define_output(41,IOMUX_OUT_UART_RTS_N); //UART RTS#

 vos_iomux_define_input(42,IOMUX_IN_UART_CTS_N); //UART CTS#

 }

 else if (vos_get_package_type() == VINCULUM_II_48_PIN)

 {

 // GPIO port A bit 1 to pin 12

 vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //LED3

 // GPIO port A bit 2 to pin 13

 vos_iomux_define_output(13,IOMUX_OUT_GPIO_PORT_A_2); //LED4

 // GPIO port A bit 4 to pin 45

 vos_iomux_define_output(45,IOMUX_OUT_GPIO_PORT_A_4); //LED6

 // GPIO port A bit 5 to pin 46

 vos_iomux_define_output(46,IOMUX_OUT_GPIO_PORT_A_5); //LED5

 // UART to V2EVAL board pins

 vos_iomux_define_output(31,IOMUX_OUT_UART_TXD); //UART Tx

 vos_iomux_define_input(32,IOMUX_IN_UART_RXD); //UART Rx

 vos_iomux_define_output(33,IOMUX_OUT_UART_RTS_N); //UART RTS#

 vos_iomux_define_input(34,IOMUX_IN_UART_CTS_N); //UART CTS#

 }

 else // VINCULUM_II_32_PIN

 {

 // GPIO port A bit 1 to pin 12

 vos_iomux_define_output(12,IOMUX_OUT_GPIO_PORT_A_1); //LED3

 // GPIO port A bit 2 to pin 14

 vos_iomux_define_output(14,IOMUX_OUT_GPIO_PORT_A_2); //LED4

 // UART to V2EVAL board pins

 vos_iomux_define_output(23,IOMUX_OUT_UART_TXD); //UART Tx

 vos_iomux_define_input(24,IOMUX_IN_UART_RXD); //UART Rx

 vos_iomux_define_output(25,IOMUX_OUT_UART_RTS_N); //UART RTS#

 vos_iomux_define_input(26,IOMUX_IN_UART_CTS_N); //UART CTS#

 }

 // use a max of 4 USB devices

 usb_ctx.if_count = 4;

 usbhost_init(-1, VOS_DEV_USB_HOST, &usb_ctx);

 boms_init(VOS_DEV_BOMS);

 fatdrv_init(VOS_DEV_FAT);

 gpioCtx.port_identifier = GPIO_PORT_A;

Copyright © 2012 Future Technology Devices International Ltd. 36

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 gpio_init(VOS_DEV_GPIO,&gpioCtx);

 tcbFirmware = vos_create_thread(29, SIZEOF_FIRMWARE_TASK_MEMORY, firmware, 0);

 vos_start_scheduler();

main_loop:

 goto main_loop;

}

void firmware(void)

{

 unsigned char connectstate;

 unsigned char status;

 usbhost_device_handle *ifDev;

 usbhost_ioctl_cb_t hc_iocb;

 usbhost_ioctl_cb_class_t hc_iocb_class;

 msi_ioctl_cb_t boms_iocb;

 boms_ioctl_cb_attach_t boms_att;

 fat_ioctl_cb_t fat_ioctl;

 fatdrv_ioctl_cb_attach_t fat_att;

 gpio_ioctl_cb_t gpio_iocb;

 unsigned char leds;

 FILE *file;

 // open host controller

 hUsb = vos_dev_open(VOS_DEV_USB_HOST);

 // open GPIO device

 hGpio = vos_dev_open(VOS_DEV_GPIO);

 gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

 gpio_iocb.value = 0xff; // set all as output

 vos_dev_ioctl(hGpio, &gpio_iocb);

 do

 {

 //wait for enumeration to complete

 vos_delay_msecs(250);

 leds = LED0; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(250);

 leds = 0; vos_dev_write(hGpio,&leds,1,NULL);

 // user ioctl to see if bus available

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_CONNECT_STATE;

 hc_iocb.get = &connectstate;

 vos_dev_ioctl(hUsb, &hc_iocb);

 if (connectstate == PORT_STATE_ENUMERATED)

 {

 leds = LED1; vos_dev_write(hGpio,&leds,1,NULL);

 // find and connect a BOMS device

 // USBHost ioctl to find first BOMS device on host

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

 hc_iocb.handle.dif = NULL;

 hc_iocb.set = &hc_iocb_class;

 hc_iocb.get = &ifDev;

 hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;

 hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;

Copyright © 2012 Future Technology Devices International Ltd. 37

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

 if (vos_dev_ioctl(hUsb, &hc_iocb) != USBHOST_OK)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 break;

 }

 // now we have a device, intialise a BOMS driver for it

 hBoms = vos_dev_open(VOS_DEV_BOMS);

 // BOMS ioctl to attach BOMS driver to device on host

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

 boms_iocb.set = &boms_att;

 boms_iocb.get = NULL;

 boms_att.hc_handle = hUsb;

 boms_att.ifDev = ifDev;

 status = vos_dev_ioctl(hBoms, &boms_iocb);

 if (status != MSI_OK)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 break;

 }

 // now we have the BOMS connected open the FAT driver

 hFAT = vos_dev_open(VOS_DEV_FAT);

 fat_ioctl.ioctl_code = FAT_IOCTL_FS_ATTACH;

 fat_ioctl.set = &fat_att;

 fat_att.boms_handle = hBoms;

 fat_att.partition = 0;

 status = vos_dev_ioctl(hFAT, &fat_ioctl);

 if (status != FAT_OK)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 break;

 }

 // lastly attach the stdio file system to the FAT file system

 fsAttach(hFAT);

 // now call the stdio runtime functions

 file = fopen("TEST.TXT", "a+");

 if (file == NULL)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 break;

 }

 if (fwrite(tx_buf, strlen(tx_buf), sizeof(char), file) == -1)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 }

 if (fclose(file) == -1)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 }

Copyright © 2012 Future Technology Devices International Ltd. 38

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 leds = LED1; vos_dev_write(hGpio,&leds,1,NULL);

 fat_ioctl.ioctl_code = FAT_IOCTL_FS_DETACH;

 if (vos_dev_ioctl(hFAT, &fat_ioctl) != FAT_OK)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 break;

 }

 vos_dev_close(hFAT);

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_DETACH;

 if (vos_dev_ioctl(hBoms, &boms_iocb) != MSI_OK)

 {

 leds = LED3; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(1000);

 break;

 }

 vos_dev_close(hBoms);

 leds = 0; vos_dev_write(hGpio,&leds,1,NULL);

 vos_delay_msecs(5000);

 }

 } while (1);

}

Copyright © 2012 Future Technology Devices International Ltd. 39

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3 Toolchain

FTDI has created set of tools for Vinculum II (VNC2) which includes a C compiler, assembler, linker,
debugger and integrated development environment.

These tools facilitate application development on VNC2 using a kernel, device driver and runtime
libraries provided by FTDI.

All tools are command line applications and as such can be integrated into third party applications
such as IDEs or scripts.

3.1 Toolchain Basics

The toolchain is designed to integrate with the firmware (RTOS, drivers and libraries) supplied by
FTDI.

Addresses for ROM and RAM are handled differently:

All ROM addresses are specified in word addresses as this is the size of data which is stored in the
Flash ROM.

All memory addresses are specified as byte addresses.

3.2 VinC Compiler

VinC Compiler, implemented as part of the overall Toolchain, for the VNC2 is:

ANSI 'C' compatible (with restrictions)

Support for structures, unions and arrays - Structures and arrays can be comprised of base data
types or other data structures

Language level support for accessing flash memory

Support for pointers including function pointers. There are some restrictions on using pointers to
data stored in ROM.

Support for typedef

Support for ANSI C control flow statements, selection statements and operations

Support for inline assembly

Efficient RAM usage and optimisations

Separate preprocessor (VinCpp.exe)

Produces optimized code for VNC2

Copyright © 2012 Future Technology Devices International Ltd. 40

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.2.1 Compiler Command Line Options

VinC allows the user control various stages of compiling with the help of command line options. In
addition, VinC also acts as a driver for other tools in the Toolchain and allows it to be controlled with
additional command line options. The following command line options are supported in the VinC
Compiler:

VinC [options] [file ...] [-L linker options]

Option Description

-E Run the preprocessor and stop.

-S Stop processing after preprocessing and compilation.

-c Preprocess, compile and assemble but do not invoke linker.

-O level Specify optimisation for compiler.

-d level Specify debug information level for compiler.

-D macro=defn Defines macro with optional defn in preprocessor.

-U macro Undefines macro in preprocessor.

-I dir Add a search directory for include files.

-o file Specify output filename.

-l file Specify log filename.

--save-temps Save all temporary files.

--save-temp Save temporary files: 'a' assembler, 'i' preprocessor,'o' object.

--combine Combine source files on command line into single input file for
compiling.

--library Create a single output file for all source files on command line.

-v Verbose output of command lines for tools.

-q Quieten output of command lines for tools.

--version Display tool version.

--all-versions Display all tool versions.

--max-warn limit Limit the number of warnings displayed.

--max-err limit Limit the number of errors displayed.

--help Display this help message.

-L Process all following options as linker options.

3.2.1.1 Compiler File Type

The compiler can control the 4 stages of compilation: Preprocessing, compilation, assembling and
linking. The type of file passed to the compiler and the compiler command parameters determine
which stages are performed.

The following file extensions are used for specifying the start stage of compilation:

file.c An unpreprocessed C source file which will be preprocessed prior to compilation

file.i A preprocessed C source file which will be compiled, assembled and linked.

file.asm An assembler file to be assembled and linked.

file.obj An object file to be sent to the linker

3.2.1.2 Compile Stage Selection

It is possible to specify which stage to stop to the compiler. These flags can stop after
preprocessing, compilation, assembling or allow linking to complete.

Copyright © 2012 Future Technology Devices International Ltd. 41

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

-E

--pp

Run the preprocessor and stop. Any unpreprocessed C source files will be preprocessed
and given a '.i' extension.

-S

--ppx

Stop processing after preprocessing and compilation. Any source files will be compiled to a
assembly file and given a '.asm' extension.

-c

--ppca

Preprocess, compile and assemble but do not invoke linker. Source files will be compiled or
assembled to an object file and given a '.obj' extension.

3.2.1.3 Compiler Output

The following options control the type of output of compiler.

-o

--output file

Specifies the output file name for the last stage of compilation performed. If this option is
set then there can only be one input file specified on the command line. The output file
name also overrides any file extension that may be given to a particular output file. The
default action is to use the filename of the input file and modify the file extension for the
output file.

--library

Combine all source files at the compile stage into a single assembler file. This cannot be
used in conjunction with C source files and assembler or object files. The global namespace
in each C source file is kept separate.

--combine

Similar to --library except that the global namespaces of C source files are combined.

-T

--save-temps

Keeps all intermediate files during the compilation. All preprocessed C source files,
assembler files and object files are retained, usually only the file produced for the final
stage of compilation is retained.

-t opt

--save-temp opt

Keeps selected intermediate files depending on the opt parameter. 'a' to keep assembler
files, 'i' for preprocessor files and 'o' for object files. Multiple options can be combined, for
instance, "--save-temp ao" to retain both assembler and object files.

-q

--quiet

Reduces the output of the compiler to a minimum. Only a final status message and error
messages will be displayed.

-v

--verbose

Displays the more information during compilation.

-l file

--log file

Copy preprocessor, compiler, assembler and linker output to a log file.

3.2.1.4 Compiler Information Options

-V

--version

Displays the version of the compiler.

--all-versions

Displays the version of preprocessor, compiler, assembler and linker. No further action is
taken (all other command line options ignored).

-h

--help

Copyright © 2012 Future Technology Devices International Ltd. 42

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Shows a summary of command options. No further action is taken (all other command line
options ignored).

3.2.1.5 Compile Time Options

The behaviour of the compiler stage is governed by the following options.

-O level

--optimise level

Select the level of optimisation for the compiler. The level is defined as:

0 - No optimisation

1 - Register allocation only

2 - Register allocation and some intermediate code optimisations

3 - Register allocation and full intermediate code optimisations

4 - Register allocation, intermediate code and peephole optimisations

-d level
--debug level

Specify whether debug information is generated by the compiler in the assembler output.
Available options are:

0 - No debug information

1 - Generate debug information

By default this is set to zero.

If an optimisation level is not specified then the default the optimisation level is set according to
the debug level. If debugging is turned off then optimisation is set to zero (for no optimisation); if it
is set to on, then the optimisation level is set to 4 for full optimisation.

3.2.1.6 Preprocessing Options

Preprocessor options can be specified on the command line for the compiler.

-D macro[=defn]

--define macro[=defn]

Predefine macros with an optional definition.

-U macro[=defn]

--undefmacro[=defn]

Remove definition of a macro.

-I dir

--include dir

Add a directory to the include directory search path.

3.2.1.7 Linker Options

There are many options which affect the linker operation. These can be specified on the compiler
command line.

-L opts...

--linker opts...

When this option is encountered on the compiler command line ALL further options are
passed directly to the linker and are not processed by the compiler.

3.2.2 Data Types

Compiler supports the C language standard integral data types (char, short, long, int and void) and
an additional data type (port) which is used to access I/O ports directly.

Data Type Name Size in Bits

char 8

short 16

long 32

int 32

Copyright © 2012 Future Technology Devices International Ltd. 43

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

void 0

port 8

NOTE: There is no support for floating point types.

To generate optimum code the char data type should be used as much as possible. Long and int
should only ever be used when 32-bit values are required.

A declaration of an identifier is made up of a type definition followed by an identifier. A type definition
must contain a type specifier. It may also contain any valid combination of type qualifiers and a
storage class specifier.

3.2.2.1 Type Qualifiers

Data types can be qualified with the keywords signed or unsigned, const and volatile. All datatypes
except port can be specified as rom.

signed and unsigned

These determine if the data type can be used for signed calculations. If it is signed then one data

storage bit is used for a sign bit. By default all data types except port will be signed unless

otherwise qualified.

NOTE: unsigned data types will produce smaller, faster code compared to signed data types.

const

A const qualifier enables type checking to ensure that its value is not modified by code in the scope
of the declaration. One of its main uses is where values may be passed to functions but not modified
by that function.

When const is used with pointers the following applies:

char val;

char * const ptr = &val; // ptr is a constant pointer, the value it points to can be modified as normal

char const * ptr = &val; // ptr is a normal pointer and can be modified, the value it points to cannot be modified

Const cannot be used before and after the pointer operator in the same declaration.

volatile

The volatile qualifier tells the compiler to not re-use the value of a data type during a calculation. It
always reads a fresh value of the data each time it is required in a calculation. It is used mainly
where a value may change outside the linear program flow (e.g. by an interrupt or thread).

When volatile is used with pointers the following applies:

char val;

char * volatile ptr = &val; // ptr is a volatile pointer, the value it points to is not

char volatile * ptr = &val; // ptr is a normal non-volatile pointer, the value it points to is volatile

Volatile cannot be used before and after the pointer operator in the same declaration.

rom

When a storage type is qualified with rom then the data to be stored must be initialised.

Non-pointer variables may be used transparently in code but special rules apply for pointers.

If the type is a pointer then a pointer to data stored in ROM is created. For arrays and strings the
compiler will store the initialisation data in the code section and a rom pointer will be generated to
point to the data. All access must be via the rom pointer. A rom pointer cannot be modified so all
access to the data must be made through the offset operators [].

rom char x[] = { 1,2,3,4,5};

rom int y[10] = { 1,2,3,4,5,2,3,4,5,6};

rom char *str = "Hello";

rom int buffersize = 20;

Copyright © 2012 Future Technology Devices International Ltd. 44

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

All initialisation data must be constant values or string literals. rom is not applicable to function
definitions, declarations or parameters. See the topic ROM Access for example code.

3.2.2.2 Storage Type Specifiers

The data storage type defines where and how data is stored.

Locals Globals

auto scope of the
function
destroyed
when scope left

global scope

static scope of the
function
preserved
between calls
to scope

file scope only

extern not allowed link to global scope

typed
ef

not allowed new data type defined with file scope

The default is auto, except for function declarations whose storage class is extern.

3.2.2.3 Type Specifiers

char

Bit Size Signed Range (decimal)Unsigned Range(decimal)

8 -128 to 127 0 to 255

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage
Type:

auto, static, extern, typedef

Remarks: This is the basic 8-bit data type for storage and stores a single byte of data.

Example:

char x = 4; // simple char variable

unsigned char * const y; // pointer to a constant char value

short

Bit Size Signed Range (decimal)Unsigned Range(decimal)

16 -32768 to 32767 0 to 65535

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage
Type:

auto, static, extern, typedef

Remarks: This is a short integer data type and stores a single word or two bytes of
data.

long, int

Copyright © 2012 Future Technology Devices International Ltd. 45

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Bit Size Signed Range (decimal)Unsigned Range(decimal)

32 -2147483648 to
2147483647

 0 to 4294967295

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage
Type:

auto, static, extern, typedef

Remarks: This is a long integer data type and stores two words or four bytes of data.
This is the default type specifier used if it is not explicitly specified.

void

Bit Size Signed Range (decimal)Unsigned Range(decimal)

0 N/A N/A

Supported Qualifiers: signed or unsigned, volatile, const, pointer, rom

Default Qualifiers: signed

Supported Storage
Type:

auto, static, extern, typedef

Remarks: void is a special data type that does not hold any data. Only a pointer to
void (interpreted as a pointer to anything) can be used to declare identifiers.
Another use is to mark cases where no data is to be transferred or when a
pointer is to an unspecified data type.

Example:

void *p = &x; // pointer to an unknown data type

void main(void) // function with no parameters and returning no data

port

Bit Size Signed Range (decimal)Unsigned Range(decimal)

8 N/A 0 to 255

Supported Qualifiers: N/A

Default Qualifiers: unsigned, volatile

Supported Storage
Type:

auto, extern

Remarks: port is a special type that allows direct access to I/O ports. Ports must be
initialised with an I/O register address when declared using the @ operator.
It is not possible to have a static or typedef port. Allowable I/O address
range is 0 to 512 (0x0 to 0x1ff).

Examples:

 port interrupt_reg@200; // define interrupt register at I/O address 200

 interrupt_reg = 4; // clear interrupt register bit

struct and union

struct format:struct <structure identifier (optional)> {

 <type definition> <member name identifier>(:<bit range>);

Copyright © 2012 Future Technology Devices International Ltd. 46

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 ...

} <structure variable (optional)>;

union format:union <union identifier (optional)> {

 <type definition> <member name identifier>(:<bit range>);

 ...

} <union variable (optional)>;

Remarks: Both structures and unions can be defined from either base data types (except ports),
other structures, enumerations, arrays, typedefs and pointers. The format of struct and
union is the same.

Either the variable or the identifier must be present in a declaration of a struct or
union. Both may be used to make a definition and a variable in the same declaration.

Bitfields may be specified for base data types only by using the range operator (:) after
the member name identifier. This value must be a constant value and must always
specify a size less than or equal to the size of the base type in the type definition. It
must always be padded to fill the whole size of the base data type and is never
allowed to overrun the end of the base data type.

enum

enum format:enum <enum identifier (optional)> {

 <constant identifier> (= <constant value>);

 ...

} <enum variable (optional)>;

Remarks: An enumeration creates a range of identifiers with constant values which will, by
default, increment by one as the list is defined. It is also possible to specify a value for
an identifier, in this case the list will continue to increment from the specified value.

Either the variable or the identifier must be present in a declaration of an enum. Both
may be used to make a definition and a variable in the same declaration.

All variables generated with an enumeration are of type int. In the absence of a
constant value, the first enumerator is assigned the constant value zero.

typedefs

typedef
format:

typedef <type definition> <identifier>;

Remarks: New types can be defined using the typedef keyword. The resulting identifier can be
used in place of the type definition.

The base data types void, char, short, long, int or valid combinations of enumerations,
structures, unions and arrays may be used in the definition of the new type. Valid
combinations of qualifiers and storage types are also allowed.

Strings

Copyright © 2012 Future Technology Devices International Ltd. 47

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

string format:"<string text>"

Remarks: String are enclosed in double quotes. It is not allowed to interrupt string literals by
closing then reopening the double quotes during a string definition.

All non-printable ASCII characters, single quotes, double quotes, question marks and
backslashes must be represented with escape sequences in strings.

 \? ASCII character ? is a decimal value of the ASCII character to use.(\0 for NULL
character)

\x? ASCII character ? is a hexadecimal value representing the ASCII character to use.

\a 0x07 Bell

\b 0x08 Backspace

\f 0x0c Form Feed

\n 0x0a Carriage Return

\r 0x0d Line Feed

\t 0x09 Horizontal Tab

\v 0x0b Vertical Tab

\' 0x27 Single quote character

\" 0x22 Double quote character

\? 0x3f Question mark

\\ 0x5c Backslash

Arrays

typedef
format:

<type definition> <array identifier> [<constant number of elements (optional)>] (=
{ <constant value>...}) ;

Remarks: An array is used to hold multiple data types in a contiguous sequence. The data types
may be any of the base data types (except port), structures, enumerations, other
arrays, typedefs and pointers.

The number of elements must be specified or it must be initialised with data to reserve
storage. If it is not specified or initialised then it will be assumed to be a pointer. If the
number of elements is not specified but the array is initialised then the number of
initialisation data elements is used as number of elements in the array.

The number of elements in the array must be a constant value. Likewise, the
initialisation data must be constant values too.

Pointers

typedef
format:

<type defintion> * <identifier> (= <constant value);

Remarks: A pointer is a variable that holds the memory address of something. It can be a pointer
to any of the base data types (except port), structures, enumerations, arrays, typedefs
and other pointers. The * symbol is used to form a pointer in the type definition.

Copyright © 2012 Future Technology Devices International Ltd. 48

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Pointers to other identifiers or functions are allowed.

Examples:

void * ptr; // pointer to a void (pointer to anything)

int *fn(int); // pointer to a function returning int and taking a single int as a parameter

Constants

Comments: A constant can be written as a decimal, octal or hexadecimal value, and have an
optional unsigned specified.

Constant decimals, other than zero, are not prefixed by any characters. They may have
a capital 'U' postfixed to the value to indicate that it is unsigned.

Octal numbers are prefixed by a zero ('0') character. Octals may not be signed

Hexadecimal values are always unsigned and are prefixed by the characters "0x" or
"0X".

Binary numbers are prefixed by the characters "0b" or "0B".

Character constants are represented by a single character in single quotes. The
escape sequences used for strings apply to character constants.

Constants may also have a capital 'L' appended to indicate that they are to be treated
as a long integer. A non-zero decimal number may not be prefixed with a zero ('0')
character or it will be interpreted as an octal value.

Examples:

int x = 0765; // octal constant

int q = 0xaaaaaaaa; // hexadecimal constant

signed char z = 254U; // set a signed value with the equivelant unsigned value

int w = 0; // zero

3.2.2.4 Data Conversion References

Data is converted between different variable sizes in expressions according to the following rules.
The left column is the data size on the left side of an expression, right is the data size on the right.

Left Right Result Bits affected

char char OK

char short Type mismatch Right 8 to 16 lost

char int or long Type mismatch Right 8 to 32 lost

short char OK

short short OK

short int or long Type mismatch Right 16 to 32 lost

In a assignment expression, when the left and right operand of data type is char

Example

char cVar1;

char cVar2;

cVar1 = cVar2 ;

Copyright © 2012 Future Technology Devices International Ltd. 49

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

In the assignment expression, when the left operand of type is char and right operand of type is
short

Example

char cVar1;

short sVar2;

cVar1 = sVar2 ; //Warning type mismatch

In the assignment expression, when the left operand of type is char and right operand of type is
integer

Example

char cVar1;

int iVar2;

cVar1 = iVar2 ; //Warning type mismatch

In the assignment expression, when the left operand of type is short and right operand of type is
character

Example

short sVar1;

char cVar2;

sVar1 = cVar2 ;

In the assignment expression, when the left operand of type is short and right operand of type is
short

Example

short sVar1;

short sVar2;

sVar1 = sVar2 ;

In the assignment expression, when the left operand of type is short and right operand of type is
long

Example

short sVar1;

long lVar2;

sVar1 = lVar2 ; //warning type mismatch

3.2.3 Special VNC2 Reference

VinC has defined calling convention in order for assembler functions to be called from C and vice
versa. It also defines the Port data type as a special types to allow direct access to I/O ports. it also
defines the global variables are placed in DATA segment and local variable allocated in stack.

3.2.3.1 ANSI C Feature Support Summary

VinC is a compiler that supports following features from ANSI C.

1.Data types

a.Basic Data Types

b.Arrays

c. Structures

d.Unions

Copyright © 2012 Future Technology Devices International Ltd. 50

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

e.Pointers

2.Operations

a.Precedence and Order of Evaluation

b.Arithmetic Conversions

c. Postfix Operators

d.C Unary Operators

e.Cast Operators

f. Multiplicative Operators

g.C Additive Operators

h.Bitwise Shift Operators

i. Relational and Equality Operators

j. C Bitwise Operators

k.Logical Operators

l. Conditional-Expression Operator

m.Assignment Operators

n.Sequential-Evaluation Operator

o.Side effects

3.Control flow

a.for loop

b.while loop

c. do-while loop

d.Label and Jump statements

e.return,

f. break, continue,

g.switch

4.Other Statements

a.Function calls

b.Compound statements

c. Expression and null statements

d.Selection statements (if-then-else, switch-case)

e.Conditional

3.2.3.2 C Language Restrictions

VinC has added some specific restrictions on C language to support the VNC2 architecture, these
restrictions are:

Cascading typecast are not supported

Function pointer definitions as parameters in function declaration not supported

Vacuous definition for struct or union not supported

Passing structures or unions as parameters to a function is not supported: Structures and unions
have to be passed as pointers

Returning structures or unions from function calls is not supported: Returning a pointer to a
structure or union is allowed

Floating point data type and arithmetic is not supported

Declarations must have a type specifier, a type qualifier is not sufficient (i.e. int will not be

Copyright © 2012 Future Technology Devices International Ltd. 51

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

assumed)

Bit ranges in structures or unions must have a type specifier (i.e. int will not be assumed)

3.2.3.3 Special Features

3.2.3.3.1 Accessing ports

Syntax:

PORT <name> @ <address>;

Description

VinC compiler defines Port data type as a special type to allow direct access to I/O ports. Port data
types must be defined and initialised with an I/O register address when declared using the @
operator. PORT has to be defined with global scope, and the allowable I/O address range is 0 to 511
(0x0 to 0x1ff).

Example

port interrupt_reg@200; /* define interrupt register at I/O address 200 */

interrupt_reg = 4; /* clear interrupt register bit */

3.2.3.3.2 Bit mapping

Syntax

<variable>.<constant offset>

Description

Hardware extensions are available for bitmap operations. These can be accessed using bitmapped
operations in expressions.

Bit mapping of all data types is possible by post-fixing the bit offset constant after the variable name
with a member operator. The maximum bit offset is one less than the size of the data type, the first
bit offset is zero.

Examples

unsigned char x = 0xaa;

if (x.3) return 1; // bit 3 set

3.2.3.3.3 ROM Access

Syntax

rom <type>;

Description

Variables, arrays and structures may be stored in ROM. The qualifier rom in the declaration will switch
storage from RAM to ROM.

Rom data must be initialised at declaration time and must be in global scope.

It is not allowed to create a pointer to be used to access an array or string in ROM as rom pointers
may not be modified. Therefore all data transfers from ROM must be done as an array offset from a
rom pointer.

Examples

To read in a data array:

rom char myarray[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

void readdata(char *buff16byte)

{

 for (x=0; x < 16; x++)

Copyright © 2012 Future Technology Devices International Ltd. 52

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 {

 buff16byte[x] = myarray[x];

 }

To copy a string from ROM to a RAM buffer:

rom char charversion[] = "Version1";

void main(void)

{

 int offset;

 char buffer[20];

 for (offset = 0; offset < 20; offset++)

 {

 if ((buffer[offset] = charversion[offset]) == 0) break;

 }

}

To query the program size:

struct mystruct {int x; short q;};

rom struct mystruct myst[4] = {{4,2}, {5,3}, {6,4}, {7,5}};

int cfpair(char pair)

{

 int x;

 short q;

 x = myst[pair].x;

 q = myst[pair].q;

 if (x > 5)

 return x;

 return q;

}

3.2.3.4 Function Call

VinC has defined a calling convention in order for assembler functions to be called from C and vice
versa. As shown in the calling convention figure below, caller function pushes the parameters into
the stack(right to left). Then, space is reserved for the return value in the stack by the caller and the
function is called. Return address pushed into the stack by H/W and control is transferred to the
function called, where called function allocate the space for local variables. Then performs the
operation as defined by the function and store the return value in the appropriate place reserved for
the return value. Called function clears the space allocated for local variables and return from
function. Restoration of PC from the stack is done by H/W and the return value is obtained from the
stack by caller.

Copyright © 2012 Future Technology Devices International Ltd. 53

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.2.3.4.1 Calling ASM File from C

If a C function is to be called from ASM arguments have to pushed into the stack and return address
reserved before calling the function.

Consider the following function in C:

unsigned char * get_offset (uint8 arg, unsigned char *start);

{

while (arg--)

{

start = start + sizeof(int);

}

return start;

}

 Following ASM code shows how above C function can be called in ASM. Note that parameters are
pushed in the order right-to-left to appear in the correct order on the stack in the C code.

PUSH16 $start ; push argument to stack

PUSH8 $arg ; push argument to stack

SP_DEC $2 ; allocate space for return values

CALL get_offset ; call

POP16 ret ; pop return value from the stack

SP_INC $3 ; to clear the argument space

3.2.3.4.2 Calling C from ASM

If an ASM function is to be called from C, an equivalent prototype based on the calling convection is
defined and called from the C program.

For example, if following ASM function, which conforms to the calling convention, needs to be called.
A C prototype based on the calling convection is defined as:

unsigned char * get_offset (uint8 arg, unsigned char *start);

Then the function get_offset() is called as if it is implemented in C.

get pointer to device struct

get_offset:

SP_RD8 %eax $arg

SP_RD16 %ebx $start

get_offset_start_loop:

CMP %eax $0

JZ get_offset_exit

DEC8 %eax $1

INC16 %ebx $4

JUMP get_offset_start_loop

get_offset_exit:

SP_WR16 %ebx $3

RTS

Copyright © 2012 Future Technology Devices International Ltd. 54

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.2.3.5 Architecture Issues

The VNC2 architecture supports 8, 16 and 32 bit operations on memory addresses without registers.
Operations of all sizes involving only data stored in RAM are fast and efficient.

Loading 8, 16 and 32 bit values into memory is achieved in a single operation. Most operations can
take one immediate value of 8, 16 or 32 bit size. Using 16 and 32 bit data value will, in practice,
result in larger code though.

Signed arithmetic is fully supported by hardware. Although conversions between signed values of
differing sizes is performed in software will always generate larger and slower code than unsigned

Intermediate values in calculations are assumed to be of type unsigned integer (32 bits).

There is no floating point support in hardware.

Signed modulus operations are not supported. Any modulus operation will be performed as if both
dividend and divisor are unsigned.

3.2.3.6 Considerations of local vs global variables

Global variables are placed in fixed addresses in memory and local variables are allocated on the call
stack. The call stack moves from high memory addresses to lower memory addresses. Global
variables are allocated from low addresses working up to higher addresses in memory.

VNC2 does not have general purpose registers, hence, to optimize accesses, memory locations will
be emulated as registers. These memory locations may hold local variables temporarily and they
might not be allocated on the call stack depending on certain conditions.

3.2.3.7 String Literals

The VinC compiler will store string literals in the global RAM and they can be referenced from
anywhere in the program. For instance, a pointer to a string literal passed from a function is still valid
after the program returns to the calling function. This pointer will also be valid when passed to
another unrelated function. It is good practice to store pointers to string literals with the const
keyword to allow the compiler to detect attempts to modify the string literal. This applies to both
global and locally defined string literals.

String Literal Usage

This example demonstrates string literal usage when returning a value from a function.

const char *st0 = "global char pointer"; // Global string literal

const char *strptr(void);

void main(void)

{

const char *st1;

st1 = strptr();

st1[0] = ‘\0’; // (error) C2101 cannot modify a const object

}

const char *strptr(void)

{

return "local char pointer"; // Local string literal

}

The situation is different for arrays. Although arrays may store strings they behave just like any
other variable. A local array is initialised when a function is called and its scope will follow that of any
other variable, even if it stores a ‘string’. It is not possible to pass a pointer to a locally defined array
back to a calling function as the storage for the array will be relinquished when the program returns

Copyright © 2012 Future Technology Devices International Ltd. 55

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

from a function.

Strings within Arrays

The initialised array will be recreated from data stored in ROM each time the array comes into scope.
The address of the array cannot therefore be guaranteed to be at the same address each time, nor
can it be expected that the data stored in the array is correct when the array goes out of scope. A
function erroneously returning an array is shown in this example:

char *strarr(void)

{

char ar1[] = "local array"; // Local array

return ar1; // not allowed – storage for ar1 is destroyed on return from function

}

Understanding this difference in behaviour can be exploited to save RAM memory by defining certain
strings as arrays and hence storing them in ROM.

If you are using string literals locally in functions then define them as arrays "char x[] = "string";"
This is the most efficient (for RAM) way of storing strings. If the string literal is to be passed between
functions or even assigned to a global pointer in a function then it must be defined as a string literal
“char *x = “string”;”.

3.2.3.8 Sequence Points

Between consecutive sequence points an object's value can be modified only once by an expression.
The C language defines the following sequence points

- Left operand of the logical-AND operator (&&). The left operand of the logical-AND operator is
completely evaluated and all side effects complete before continuing. If the left operand evaluates to
false (0), the other operand is not evaluated.

- Left operand of the logical-OR operator (||). The left operand of the logical-OR operator is
completely evaluated and all side effects complete before continuing. If the left operand evaluates to
true (nonzero), the other operand is not evaluated.

3.2.4 Error reference

Compiler error messages take the following form:

<filename> line <line number>: (error|warning|info) C<code> <description>

Error codes take one of the following values.

Error codes Description

0011 Preprocessing failed

0012 Assembling failed

0013 Linking failed

0900 iInternal error

0901 floating point not implemented

0910 could not open output file

0911 no such file or directory

1000 syntax error

1001 syntax error unterminated string

1002 syntax error illegal escape sequence

1003 syntax error character operation too long

1004 syntax error asm directive not allowed

1005 syntax error preprocessor directive not allowed

1100 undeclared identifier

1101 l-value required

1103 illegal use of structure or union operation

Copyright © 2012 Future Technology Devices International Ltd. 56

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

1104 incompatible operation

1200 undefined label

1202 integral type expected

1203 too many default cases

1204 constant expression required

1205 case outside of switch

1206 default outside of switch

1207 duplicate case

1208 misplaced continue

1209 misplaced break

1210 no body or expression for conditional

1214 duplicate label

1300 storage class extern not allowed here

1301 storage class static not allowed here

1302 storage class auto not allowed here

1303 storage class port not allowed here

1304 struct or union not allowed here

1305 too many storage classes in declaration

1306 function declaration not allowed here

1307 export symbol not allowed here

1400 no storage type

1401 not an allowed type

1402 conflicting storage type qualifier

1403 too many storage type qualifiers

1404 too many types in declaration

1405 type mismatch

1407 parameter number type mismatch (error)

1408 parameter mismatch in redeclaration

1409 parameter type mismatch (warning)

1410 multiple declaration

1411 cannot use void type in an expression

2000 integer arithmetic overflow

2001 expression not constant

2002 constant out of range (error)

2003 constant out of range (warning)

2004 divide by zero

2005 initialisation make a pointer from an integer without a
cast

2006 signed modulus operations not supported

2101 cannot modify a const object

2102 cannot modify rom variable

2201 rom variable for structure member should be minimum
short datatype

2300 size of the type is unknown or zero

2301 excess elements in array initialiser

Copyright © 2012 Future Technology Devices International Ltd. 57

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

2302 array must have at least one element

2402 pointer to structure required on left side of "->"

2403 structure required on left side of "."

2404 structure or union cannot contain an instance of itself

2405 left of pointer or member not a struct or union

2500 address of port is not specified

2501 initialisation of port is not allowed

2601 initialisation of extern is not allowed

2700 too few parameters in call

2702 void functions may not return a value

2703 function should return a value

2704 parameter of type void not allowed

2800 invalid pointer addition

2801 copy of volatile pointer into normal pointer

2802 copy of const pointer into normal pointer

2803 illegal port access

2804 not a member of struct or union

2805 illegal use of pointer subtraction

2806 pointer subtraction

2807 illegal function pointer declaration

2808 illegal use of pointer

2809 illegal use of array

2810 non portable pointer conversion

2811 suspicious pointer conversion

2812 invalid indirection

2900 bit fields must contain at least one bit

2901 bit field exceeds boundary

2902 bit field exceeds the range

2903 illegal use of bit operation access

2950 local variable declarations exceed total memory size

Example

An error for a case statement outside a switch statement in file test.c line 45 will give the following
message.

test.c line 45: (error) C1205 case outside of switch

3.2.4.1 Examples for General Errors

Error Description: floating point not implemented

There is no floating point support on the VNC2 hardware. The compiler will therefore not support
float or double datatypes. Only integer datatypes are supported.

Example

float iVar; //error floating point not implemented

Error Description: no such file or directory

One of the source files specified in the command line or an intermediate file used by the compiler
could not be found or could not be opened. Check that the file exists.

Copyright © 2012 Future Technology Devices International Ltd. 58

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Error Description: could not open output file

An output file could not be opened for writing. Output files can either be the file named in the
command line for the final stage of compilation or an intermediate file whose filename is generated
by the compiler. The name of the file which caused the error is given in the error message.

Check to make sure that the file and directory is not read only and that the current user has
permissions to write to that file and directory. Also check that no other program has the named file
open.

Error Description: internal error

An error occurred in the compiler that could not be resolved to a specific error code. For resolution
please contact FTDI technical support.

Error Description: local variable declarations exceed total memory size

The sum of local variable declarations in a function exceeds the maximum RAM size.

Error Description: Preprocessing failed

There was an error in the preprocessor which resulted in compilation being stopped. Refer to the
pre-processor Error reference section.

Error Description: Assembling failed

There was an error in the preprocessor which resulted in compilation being stopped. Refer to the
assembler Error Reference section.

Error Description: Linking failed

There was an error in the preprocessor which resulted in compilation being stopped. Refer to the
linker Error Reference section.

3.2.4.2 Examples for Syntax Error Codes

Error Description: syntax error

The compiler could not recognise a statement or could not resolve a sequence of statements and
identifiers.

Error Description: syntax error unterminated string

A string declaration was found which spans more than one line. Strings must include escaped
carriage returns and new line characters.

Example

char cVar;

cVar = "\n;

cVar = "\n; // unterminated string

Error Description: syntax error illegal escape sequence

An escape sequence in a char or string was not recognised. Valid escape sequences are listed in
Type Specifiers.

Example

int cVar = '\!'; //illegal escape sequence

Error Description: syntax error character operation too long

More than one character was used for a char declaration. The size of a char is always 1 character so
multiple characters cannot be used in a char declaration.

Copyright © 2012 Future Technology Devices International Ltd. 59

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

char cVar;

cVar = '\f1'; // character operation too long

Error Description: syntax error asm directive not allowed

Assembler directives cannot be used in inline assembler.

Example

asm {

.ORG 0

asmvar .DB 45 1

}

Error Description: syntax error preprocessor directive not allowed

An unsupported preprocessor directive was encountered. The compiler will implement #line and

#pragma directives only.

Example

#mydirective this is illegal

3.2.4.3 Examples for General Syntax Error Codes

Error Description: undeclared identifier

The compiler detected an attempt to use an identifier that has not been declared in the current
scope.

Example

int x;

x = y; //error undeclared identifier 'y'

Error Description: l-value required

An expression was detected that is missing the l-value (target identifier).

Example

int iVar;

++iVar=2;//error lvalue required

Error Description: illegal use of struct or union operation

A structure or union was used incorrectly in an expression. Pointers to structs and unions must be
references and dereferenced appropriately when used.

Example

struct MyStruct

{

int iMem;

};

struct MyStruct *myPointer;

struct MyStruct Obj;

myPointer = Obj; //error Illegal use of structure or union operation

Copyright © 2012 Future Technology Devices International Ltd. 60

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Error Description: incompatible operation

An operation where the l-value and r-value are incompatible was found.

Example

int a;

int *x;

struct MyStruct

{

int m;

}obj;

x=&a;

a = ((struct MyStruct)x)->m; //error incompatible operation

3.2.4.4 Examples for Conditional Statement Error Codes

Error Description: undefined label

An reference to an undefined label was made in a goto statement. Goto statements can only
address labels in the current function body.

Example

goto L1;//error Undefined Label

Error Description: integral type expected

All values used with case statements must be constant integer values. The error is reported if value
used in a case statement is a floating point value. Values with decimal points are defined as floating
point.

Example

int iVar;

switch (iVar)

{

case 1.0: // error Integral type expected

break ;

}

Error Description: too many default cases

A switch statement may have only one default case. If there are more multiple default statements
then this error will be reported.

Example

int iVar;

switch (iVar)//error Too many default cases

{

default :

default :

}

Error Description: constant expression required

When an enumeration is initialised the value used must be a constant.

Example

int iVar;

enum eTag

{

Copyright © 2012 Future Technology Devices International Ltd. 61

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

a = iVar //constant expression required

}eObj;

Error Description: case outside of switch

A case statement was encountered which was not inside the body of a switch statement.

Example

int iVar;

if(iVar)

{

case 1:// error case outside the switch

}

Error Description: default outside of switch

A default case statement was encountered which was not inside the body of a switch statement.

Example

int main()

{

 if(1)

 {

 return 1;

 }

}

int function()

{

 int iVar;

 switch (iVar)

 {

 case 1:

 return 1;

 break;

 }

}

void function1(void)

{

default: //error default outside the switch

 if (1)

 {

 default: //error default outside the switch

 {

 default: //error default outside the switch

 }

 }

}

Error Description: duplicate case

More than one case statement in a switch statement evaluated to the same value. The value of
every case statement in a switch must be unique.

Example

int iVar;

switch (iVar) //error Duplicate case

{

case 1:

break ;

case 1:

break ;

Copyright © 2012 Future Technology Devices International Ltd. 62

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

}

Error Description: misplaced continue

A continue statement could not resolve to a loop statement such as for, while or do.

Example

int iVar;

switch (iVar)

{

case 1:

break;

case 2:

break;

case 3:

continue;//error misplaced continue

}

Error Description: misplaced break

A break statement could not resolve to a statement such as switch, for, while or do.

Example

int iVar;

if (iVar)

{

 break; //error Misplaced break

}

Error Description: no body or expression for conditional

A do or switch expression was encountered with no body.

Example

do int x; while (1);

Error Description: duplicate label

A label name has already been used within the current scope. Label names in function must be
unique.

Example

void function(void)

{

 cleanup:

 return;

 cleanup: //error duplicate label

 return;

}

3.2.4.5 Examples for Storage Classes Error Codes

Error Description: storage class extern not allowed here

An extern storage class was used where it is not allowed. For instance in the parameters of a
function.

Example

Copyright © 2012 Future Technology Devices International Ltd. 63

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

function(extern int iVar) //error Storage class 'extern' is not allowed here

Error Description: storage class static not allowed here

A static storage class was used where it is not allowed.

Example

function(static int iVar) //error Storage class 'static' is not allowed here

Error Description: storage class auto not allowed here

The auto storage class was used where it is not allowed.

Example

auto int iVar; //error Storage class 'auto' is not allowed here

Error Description: storage class port not allowed here

A port declaration was detected in a function, a parameter or a structure or union member. Only
global scope ports are allowed. It will also be issued when a pointer to a port is defined.

Example

port *p4@45; //error storage class 'port' not allowed here

function(port p3) //error storage class 'port' not allowed here

void main(void)

{

port p2@23; //error storage class 'port' not allowed here

}

Error Description: struct or union not allowed here

A struct or union has been used as a return value or parameter to a function. Only pointers to
structs or unions may be used as parameters and return values of functions.

Example

struct tag

{

char j;

};

struct tag *my[2];

struct tag funct(int);//error struct or union not allowed here

funct(2);

struct tag funct(int k) // error struct or union not allowed here

{

int c;

return my[1];

}

Error Description: too many storage classes in declaration

More than one storage class have been used in a declaration. There may be only one used at a time,
the default is auto.

Example

static extern int iVar; // error Too many storage classes in declaration

Copyright © 2012 Future Technology Devices International Ltd. 64

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Error Description: function declaration not allowed here

A function may not be declared within a function, an expression or a code block.

Example

function(int fVar()) //error function declaration not allowed here

Error Description: export symbol not allowed here

The symbol export has been used inside a function or in a declaration which does not have global
scope.

Example

function()

{

 export int iVar; //error Export not allowed here

}

3.2.4.6 Examples for Declaration Error Codes

Warning Description: no storage type

No storage type has been specified for a declaration.

Example

Error Description: not an allowed type

An operation on a variable failed because of it's type. It is not allowed to dereference non-pointer
types nor use pointer types in some types of operation.

Example

int iVar1,iVar2;

iVar1 = *--iVar2; //error not an allowed type

Error Description: conflicting storage type qualifier

The signed and unsigned storage type qualifiers for a declaration conflict. A declaration must be
either signed or unsigned.

Example

signed unsigned int iVar1; //error conflicting storage type qualifier

Error Description: too many storage type qualifiers

A declaration has more than one storage classes in the declaration. It must contain one of auto,
extern, static or port.

Example

extern static int iVar1; //error too many storage classes in declaration

Error Description: too many types in declaration

A declaration has more than one type in it's declaration. Only one data type may be specified for
each variable, if none is specified then int will be assumed.

Example

char int iVar1; //error too many types in declaration

Copyright © 2012 Future Technology Devices International Ltd. 65

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Warning Description: type mismatch

A the type of the l-value and r-value do not match. This may be due to a sign mismatch or data size
mismatch.

Example

char cVar;

int iVar;

cVar = iVar ; //Warning Type Mismatch

Error Description: parameter number type mismatch

A mismatch occurred between the type of a parameter in a prototype and the type used in the
function declaration. The mismatch is for data size and data type differences.

Example

void function(int iVar);

int iLVar;

function(iLVar);

void function(int *iVar) //Error Parameter Number 1 type mismatch

{

}

Warning Description: parameter mismatch in redeclaration

A mismatch occurred between the parameters in a function's declaration or prototype and the
parameters passed to a function in a call. May also occur when a mismatch in the count of the
parameters occurs in a redeclaration.

Example

void function(int iVar);

void function(int iVar, int qVar) //error parameter mismatch in redeclaration

{

}

function(var1, var2, var3); //error parameter mismatch in redeclaration

Warning Description: parameter number type mismatch

A mismatch occurred between the type of a parameter in a prototype and the type used in the
function declaration. The mismatch is for differences in sign.

Example

void function(int iVar);

unsigned int iLVar;

function(iLVar);

void function(unsigned int iVar) //Error Parameter Number 1 type mismatch

{

}

Error Description: multiple declaration

The same variable name has been used in the same scope more than once.

Example

int iVar;

char iVar; // error multiple declaration

Copyright © 2012 Future Technology Devices International Ltd. 66

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Error Description: cannot use a void type expression

If a void type is used then this cannot be used in an expression. For example, a function may return
void, in which case it may not be used in an expression.

Example

void function()

{

}

int iVar;

if(iVar+function()) //error cannot use a void type in an expression

{

iVar++;

}

3.2.4.7 Examples for Constant Range Error Codes

Error Description: integer arithmetic overflow

A constant exceeds the maximum size of an integer (2^32).

Example

char cVar = 0x100000000; //error integer arithmetic overflow

Error Description: expression not constant

A value used in a case statement, port address assignment, global variable declaration or array
initialiser list is not a constant.

Example

char cGlobal1 = 87;

char cGlobal2 = cGlobal1 + 10; //error expression not constant

Example

int cVar = 1;

switch (x) {

case cVar: break; //error expression not constant

}

Warning Description: constant out of range

A value used in an assignment exceeds the range which can be stored in the variable.

Example

char cVar = 87654; //warning constant out of range

Error Description: constant out of range

A value used in an operation exceeds the limits for the destination variable.

Example

unsigned char cVar;

typedef struct myStruct

{

int a;

int b;

} X;

Copyright © 2012 Future Technology Devices International Ltd. 67

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

X x;

unsigned char *pa;

unsigned char *pv;

cVar = 0xfe;

x.a = 0x55555555;

x.b = 0xaaaaaaaa;

pv = (unsigned char*)&x;

pv += 4;

if (*pv == 0xaaaaaaaa) //error Constant out of range

{}

Error Description: divide by zero

An operation has a divide operation where the denominator is a constant zero.

Example

int iVar;

iVar = iVar / 0; //error divide by zero

Warning Description: initialization makes pointer from integer without

cast

A pointer is initialised with a constant or variable that is not a pointer type.

Example

char *cVar = 0x12345678;//warning initialization makes pointer from integer without a cast

Warning Description: signed modulus operations not supported

A modulus operation is performed with a signed dividend or devisor. The result of a modulus
operation including a signed value will be computed as if the signed value were unsigned.

Example

char y = 40;

char x = -10;

char r;

r = y%x; //warning signed modulus operations not supported

// the result, r, will 40

3.2.4.8 Examples for Constant Error Codes

Error Description: cannot modify const object

An attempt has been made to modify the value of a variable which has been declared as a constant.

Example

const unsigned int uiVar = 2;

uiVar++; //cannot modify a const object

Error Description: cannot modify rom variable

Code which attempts to modify a variable held in ROM has been found.

Example

rom int iVar;

iVar = 2; //error cannot modify rom variable

Copyright © 2012 Future Technology Devices International Ltd. 68

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.2.4.9 Examples for Variable Error Codes

Error Description: rom variable for structure member should be minimum

short datatype

If a structure or union is defined as a ROM storage type then the minimum size of any member
datatype is a word. Datatype short, int, long and all pointers are allowed but char is not.

Example

rom struct stx {

int x;

short y;

char z; // error rom variable for structure member should be minimum short datatype

};

3.2.4.10 Examples for Array Error Codes

Error Description: size of the type is unknown or zero

An operation was attempted on a variable for which it cannot determine the correct size. Or the
variable size was determined to be zero. This may also be generated when an array size cannot be
determined from the initialiser.

Example

void *vPtr1;

vPtr1-- ; //error size of the type is unknown or zero

char x[]; //error size of the type is unknown or zero

Error Description: excess elements in array initialiser

When an array was initialised there were more initialisers than the declared size of the array.

Example

int arry[3] = {1,2,3,4}; //excess elements in array initialiser

Error Description: array must have at least one element

An array must have one or more elements. A zero length array cannot be declared.

Example

int iArr[0]; //error Array must have at least one element

3.2.4.11 Examples for Structure Union Error Codes

Error Description: pointer to structure required on left side of "->"

The variable on the left side of a structure pointer operator is not a pointer to a structure or union.

Example

int iVar;

struct myStruct

{

 int iMem;

};

struct myStruct StObj;

iVar=StObj->iMem;//error pointer to structure required on left side of "->"

Error Description: structure required on left side of "."

Copyright © 2012 Future Technology Devices International Ltd. 69

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The variable on the left side of a structure member operator is not a structure or union.

Example

int iVar;

struct myStruct

{

 int iMem;

};

struct myStruct *StObj;

iVar=StObj.iMem; //error structure required on left side of "."

Error Description: structure or union cannot contain an instance of itself

Only pointers to self-referential instances of structures are allowed.

Example

struct myStruct

{

struct myStruct

{

int iMem;

}myInnerStruct; //error structure or union cannot contain an instance of itself

};

struct myStruct2

{

struct myStruct2 st2; //error structure or union cannot contain an instance of itself

struct *myStruct2 pst2; // pointer to instance of self OK

};

Error Description: left of pointer or member not a struct or union

Only pointers to self-referential instances of structures are allowed.

Example

int x;

x.member = 4; //error left of pointer or member not a struct or union

x->pointer = 5; //error left of pointer or member not a struct or union

3.2.4.12 Examples for Initialisation Error Codes

Error Description: address of port is not specified

A port datatype must be initialised with the address of the port.

Example

port pt1 ; //address of port is not specified

Error Description: initialisation of port is not allowed

A port datatype must only be initialised with the address of the port. There can be no numerical
value assigned to the port at initialisation time.

Example

port pt1 =1 ; //initialisation of port is not allowed

Error Description: initialisation of extern is not allowed

VinC issues following error message for the below given example

Copyright © 2012 Future Technology Devices International Ltd. 70

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

extern int iVar =1 ; //initialisation of externals is not allowed

3.2.4.13 Examples for Function Error Codes

Error Description: too few parameters in call

A call to a function or a declaration of a function or it's prototype contains fewer parameters than
expected.

Example

void x(int, int, int);

void x(int a, int b) //error too few parameters in call & parameter mismatch in redeclaration

{

}

void main(void)

{

x(1); //error too few parameters in call

}

Warning Description: void function may not return value

A value was returned from a function which was not declared to return a value.

Example

void function() //warning void function may not return value

{

 return 1;

}

Warning Description: function should return a value

No suitable return statement was found in a function which was declared to return a value.

Example

int function() //warning function should return a value

{

}

Error Description: parameter of type void is not allowed

A parameter to a function may not be of void type.

Example

int function(void x) //error parameter of type void is not allowed

{

}

3.2.4.14 Examples for Pointer Error Codes

Error Description: invalid pointer addition

An addition of 2 pointers was detected. The increment used in a pointer addition is a multiple of the
pointer size, therefore adding 2 pointers is not a valid operation.

Example

int *iPtr1,*iPtr2,*iPtr3;

int iVar;

Copyright © 2012 Future Technology Devices International Ltd. 71

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (iVar)

{

iPtr1 = iPtr2 + iPtr3 ;//error invalid pointer Addition

}

Warning Description: copy volatile pointer into normal pointer

A volatile pointer was copied into a normal pointer. The normal pointer does not inherit the volatile
properties of the original pointer.

Example

Warning Description: copy const pointer into normal pointer

A const pointer was copied into a normal pointer. The normal pointer does not inherit the const
properties of the original pointer.

Example

Error Description: illegal port access

Not all operations are allowed on ports. Unary operations, array operations, reference, de-reference,
and port-to-port assignments are not allowed. It is not possible to create a pointer to a port or pass
or return a port from a function.

Example

port p1@40, p2@50;

void main(void)

{

char *p3;

p2 = p1; //error illegal port access

p2++; //error illegal port access

p3 = &p1; //error illegal port access

}

Error Description: not a member of struct or union

The name to the right of a structure member or structure pointer operation is not a member of that
structure.

Example

struct q {

int a;

int b;

} stq;

if (stq.c > 1) //error not a member of struct or union

Error Description: illegal use of pointer subtraction

A error is issued when pointer subtraction is encountered when constant and pointer operand.

Example

int Result;

int *x1;

Result = 2 - x1; //error Illegal use of pointer subtraction

Warning Description: pointer subtraction

Copyright © 2012 Future Technology Devices International Ltd. 72

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

A warning is issued when pointer subtraction is encountered when both operands are not both
pointers.

Example

unsigned char ucArray[10];

unsigned char *ucPtr;

ucPtr = ucArray;

ucPtr = ucArray - 3; // warning pointer subtraction

Error Description: illegal function pointer declaration

A function pointer was declared without the name of the function being made a pointer.

Example

int (PF)(int x, int y); //error illegal function pointer declaration

Error Description: illegal use of pointer

Pointers may only be added or subtracted. All other operations are illegal.

Example

int *iPtr1,*iPtr2,*iPtr3;

int iVar;

if(iVar)

{

iPtr1 = iPtr2 * iPtr3 ;//error illegal use of pointer

}

Error Description: illegal use of array

Arrays may only be addressed by an offset on the left size of an expression. On the right side they
may be treated as a pointer. It is not permitted to modify the actual address of an array.

Example

unsigned char ucArray[10];

++ucArray; // error illegal use of array

Warning Description: non portable pointer conversion

A conversion between a non-pointer and a pointer will result in a non-portable operation.

Example

struct myStruct

{

char mem;

};

int iVar;

struct myStruct *myPointer;

struct myStruct StArray[2];

myPointer = iVar;//warning Non portable pointer conversion

Warning Description: suspicious pointer conversion

A referencing or de-referencing operation on a pointer resulted in an inconclusive pointer type.

Example

char ***cPtr1;

char *cPtr2;

char *Ptr;

Copyright © 2012 Future Technology Devices International Ltd. 73

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Ptr = *cPtr1; //warning suspicious pointer conversion

Ptr = *cPtr2; //warning suspicious pointer conversion

Error Description: invalid indirection

VinC issues following error message for the below given example

Example

int iArray;

int iVar;

iVar = 2 - iArray[2]; //error Invalid indirection

3.2.4.15 Examples for Bitfield Error Codes

Error Description: bit fields must contain at least one bit

Zero length bit fields are not permitted.

Example

struct myStruct

{

 unsigned char ucMem:0;//error Bit fields must contain at least one bit

} ;

Error Description: bit field exceeds the range

The size of a bit field exceeds the maximum range of the specified storage type.

Example

struct myStruct

{

unsigned int uiMem:1;

unsigned char ucMem1:9;//error Bit Field Exceeds Range

unsigned char ucMem2:5;

unsigned char ucMem3:5;

}myStObj;

Warning Description: bit field exceeds boundary

The size of a bit field causes it to run over the maximum size of the storage type.

Example

struct myStruct

{

unsigned short uiMem:12;

unsigned short ucMem:6; //warning Bit Field Exceeds Boundary

}myStObj;

Warning Description: illegal use of bit operation access

A bit operation exceeded the range of the variable storage type.

Example

char x = 0xAA;

if (x.3 == 1) {}

if (x.9 == 0) {} //error illegal use of bit operation access

Copyright © 2012 Future Technology Devices International Ltd. 74

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.2.5 Pre-processor

3.2.5.1 Pre-processor Directives

The preprocessor parses special directives used in the C files. A directive starts with a ‘#’ token
followed immediately by a preprocessor keyword. By default it ends with a new-line character but it
can also end with a backslash ‘\’ character which is continuation marker. Leading and trailing spaces
in the backslash character is allowed.

#if

The #if directive is used to conditionally include or exclude a portion of code depending on the

outcome of a certain expression.

Format:

#if <expression>

statements.....

#endif

#else

The #else directive conditionally include a portion of code (codes between #else directive and #endif
directive) if the condition in #if, #ifdef or #ifndef directive results to 0.

Format:

#if <expression>

Statements...

#else

Statements...

#endif

#endif

The #endif directive indicates the end of a conditional directive - #if, #ifndef and #ifdef. Please refer
to #if, #ifndef or #ifdef for the syntax.

#error

The #error directive is used in generating an error message and results to stop compilation process.
This directive is passed to the compiler unaltered.

Format:

#error “error message”

#pragma

The #pragma directive is used to specify information to the compiler. It provides a way for the
compiler to offer machine /operating system-specific features while retaining the compatibility with
the C language. This directive is passed to the compiler unaltered.

Format:

#pragma <argument/s>

#define

The #define directives is used for defining a symbol or macro.

For defining a symbol:

#define <symbol>

Copyright © 2012 Future Technology Devices International Ltd. 75

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

For defining a macro:

#define <symbol> <value>

#define <symbol>(A, ...) <value>

#undef

The #undef directive is used to undefine a symbol but it can be redefined later

Format:

#undef <symbol>

#ifdef

The #ifdef directive is used to conditionally include a portion of the code if the symbol has been
defined using a #define directive.

Format:

#ifdef <name>

Statements...

#endif

#ifndef

This directive is used to conditionally include a portion of the code if the symbol has not been defined
using a #define directive. It is useful for once-only headers. It allows the header files to be included
once.

Format:

#ifndef <symbol>

Statements...

#endif

#elif

The #elif directive is used if there are more than two possible alternatives

Format:

#if <expression>

Statement...

#elif < expression >

Statement...

#endif

#include

The #include directive is used in including the contents of the included file in the current source file.

Format:

#include “header file”

#include <header file>

#line

The #line directive is used to set the line number and filename of the current file (but can be
omitted). The line number in #line directive shall be assigned to the next line of code following the
said directive

Format:

#line <line number>

#line <line number> “filename”

Copyright © 2012 Future Technology Devices International Ltd. 76

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.2.5.1.1 Predefined Macros

The Preprocessor defines standard and VNC2 specific macros.

Standard Macros

__DATE__

Expands to the date in the current time zone.

The output is of the format: "Aug 13 2009".

__TIME__

Expands to the time in the 24 hour clock in the current time zone.

The output is of the format: "23:12:02".

__LINE__

This macro expands to the current line of the file where it appears. It is an integer number.

__FILE__

Expands to the name and relative path of the file in which it appears.

The path is the actual path used to compile the file relative to the current directory of the compiler.
There are no quotes placed around the filename.

VinC Specific Macros

_VINC

This is always defined by the VinC compiler. It can be used to separate code targeted specifically for
a Vinculum device from code for other devices in the same file.

_VINCULUM

This macro expands to the model of Vinculum device. Currently it is set to 2 signifying that the
compiler supports VNC2.

_VINCULUM_VERSION

The version of the VinC compiler is available in this macro. This can be used to work out any
differences between versions of the compiler.

_VDEBUG

The file is being compiled in debug mode with the flag "-d 1" set by in the compiler command line.
NOTE: V1.4.0 toolchain and above.

_VRELEASE

Release mode has been specified by the flag "-d 0" in the compiler command line. NOTE: V1.4.0
toolchain and above.

3.2.5.2 Error reference

Preprocessor error messages take the following form:

<filename> line <line number>: (error|warning|info) P<code> <description>

Error codes take one of the following values.

Error codes Description

1001 missing (in expression

1002 missing) in expression

1005 numeric too large

1006 unterminated #if

1007 unterminated #ifdef

1008 unterminated #ifndef

1010 #elif without #if

1011 #else without #if

1012 #else after #else

1013 #endif without #if

Copyright © 2012 Future Technology Devices International Ltd. 77

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

1014 constant too large

1016 redefined

1017 location of the previous definition

2000 invalid identifier

2001 bad directive syntax

2002 missing closing ')'

2003 invalid include filename

2004 macro argument syntax error

2005 missing expression

2006 expression syntax error

3001 too many input files

3002 no input file specified

3003 no such file or directory

3006 #include nested too deep

3008 macro names must be identifiers

4001 argument mismatch

4003 unterminated argument list

3.2.5.2.1 Examples for Directive Error Codes

Error Description: missing (in expression

Open parenthesis is missing in the #if directive expression.

Example

#if x==1)

Error Description: missing) in expression

Close parenthesis is missing in the #if directive expression.

Example

#if (x==1

Error Description: numeric too large

Constant value given in the #if directive expression exceeds 0xFFFFFFFF.

Example

#if 10000000000000000000000000000+1

Error Description: unterminated #if

#if directive in a file must be matched by a closing #endif directive

Example

#if 1

Error Description: unterminated #ifdef

#endif directive is missing for #ifdef directive

Copyright © 2012 Future Technology Devices International Ltd. 78

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

#ifdef xx

Error Description: unterminated #ifndef

#endif directive is missing for #ifndef directive

Example

#ifndef TEST

#define TEST

Error Description: #elif without #if

Nested #elif directive in a file must be matched with #if and #endif directive

Example

#elif 1

Error Description: #else without #if

#else directive in a file must be matched with #if and #endif directive

Example

#else

Error Description: #else after #else

Only one #else directive should have between #if and #endif directive

Example

#if 1

#elif 1

#else

#else

#endif

Error Description: #endif without #if

#if directive in a file must be matched with #endif directive

Example

#endif

Warning Description: constant too large

Constant value given in the #if directive expression exceeds 0xFFFFFFFF

Example

#if x==10000000000000000000000000000

#endif

Warning Description: redefined

if the macro is redefined then warning will issue

Copyright © 2012 Future Technology Devices International Ltd. 79

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

#define MACRO 10

#define MACRO

Warning Description: location of the previous definition

if the macro is redefined then warning will issue

Example

#define MACRO 10

#define MACRO

3.2.5.2.2 Examples for File Error Codes

Error Description: invalid identifier

#ifndef directive expects identifier instead of constant value

Example

#ifndef 1

Error Description: bad directive syntax

#define directive expects identifier instead of directive

Example

#define #define

Error Description: missing closing ')'

While using the identifier for replacement expects closing parenthesis ')'

Example

#define FUNC(x,y) Result = 0xff

FUNC(1,2; // error missing closing ')'

Error Description: invalid include filename

Unwanted parenthesis given for the file name in #include directive

Example

#include ""file.h"

Error Description: macro argument syntax error

#define directive expects valid argument

Example

#define FUNC((x) #x

Error Description: missing expression

#if directive expects constant expression instead of NULL.

Copyright © 2012 Future Technology Devices International Ltd. 80

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

#if

Error Description: expression syntax error

#define directive expects token string for the identifier

Example

#define test

#if test++1 //error

#define x 10

#endif

3.2.5.2.3 Examples for General Error Codes

Error Description: too many input files

Too many input files specified after application name.

Example

VinCPP file1.c file2.c

Error Description: no input file specified

No input file is specified after the application name

Example

VinCpp

Error Description: no such file or directory

File does not exist

Example

#include "file.h"

Warning Description: #include nested too deep

Recursive inclusion of file

Example

//file1.h

#include “file2.h”

//file2.h

#include “file1.h”

Warning Description: macro names must be identifiers

Macro names in –U option does not start with an alphabet

Example

VinCpp file.c -U 9MACRO

Copyright © 2012 Future Technology Devices International Ltd. 81

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Error Description: argument mismatch

Number of arguments in a macro call is not correct

Example

#define func(x,y) x##y

void main()

{

int x = func(10); //lacking argument

}

Error Description: unterminated argument list

Unterminated string value in a function-like macro

Example

#define func(x,y,) x##y

void main()

{

int x = func(10,"test); //unterminated string

}

3.3 VinAsm Assembler

The assembler will Normally, the assembler generates an object file which is in ELF format. If debug
flag is enabled, the assembler generates debug information which is in DWARF2 format.

3.3.1 Assembler Command Line Options

The VNC2 Assembler Command Line options are listed in the table below.

VinASM [options] [file ...]

Option Description

-v Verbose output of the command lines.

-d level Includes debugging information in the object file.

-o filename Specify output filename

-I directory Adds a search directory for include files

-l filename Specify a log filename

--help Display help message

--version Display version number

-c Case-sensitive checking for labels/symbols

-u Ignores underscores in symbols/labels

3.3.2 Assembly Language

The programming syntax used by the VNC2 Assembler is similar to the other assemblers. There may
be variation on some aspects yet in general, still the same with other existing assemblers.

3.3.2.1 Lexical Conventions

There are conventions that needs to be followed when creating a source program using the VNC2
Assembler. The convention for the following must be noted.

Copyright © 2012 Future Technology Devices International Ltd. 82

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.2.1.1 Comments

The assembler supports single-line comments. This can be done using the '#' character. Thus, any
text following the '#' character is ignored.

3.3.2.1.2 Functions

There is a mechanism to distinguish a label from a function. If a certain label needs to be considered
as a function, then .FUNCTION directive must be present right after the label declaration. Then .
FUNC_END must be present at the end of the function scope.

Related Links

.FUNCTION

.FUNC_END

3.3.2.1.3 Identifiers

Identifiers may be used as label, function name, etc. It consists of alphanumeric and selected special
characters namely:

% (percent)

_ (underscore)

@ (at sign)

() (open and close parenthesis)

* (asterisk)

3.3.2.1.4 Keywords

Keywords are tokens which have special meaning to the assembler. It can either be assembler
mnemonics (assembler instructions) or directives.

Upon invoking the keywords, correct syntax must be provided and take note that it must be in
uppercase.

3.3.2.1.5 Labels

A label consists of an identifier and followed by a colon ':'. By default, a label name is case-
insensitive unless -c option is used.

A warning will be issued if similar label is defined.

3.3.2.1.6 Numeric Value

Numeric value can be of two forms - decimal and hexadecimal. There's no restriction on where to use
each type. Using either of the forms will do.

3.3.2.1.7 White Space Characters

Any number of white spaces is allowed between tokens. For directives and instructions, it must be
contain in a single line.

3.3.3 Assembler Directives

There are several kinds of directives that are supported by the VNC2 Assembler. The following are
the classifications:

Data Directives

Debugger Directives

End Directive

File Inclusion Directive

Location Control Directives

Symbol Declaration Directives

Copyright © 2012 Future Technology Devices International Ltd. 83

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.3.1 Data Directives

Data directives are used in allocating memory. The allocated memory may be initialized with some
values.

3.3.3.1.1 .ASCII Directive

Syntax

label .ASCII string

Parameters

label

The name of the identifier to which the character string will be assigned to.

string

The string literal to be assigned to label. It must be enclosed with double quotes.

Description

The .ASCII directive allows the assembler to accept string literal value for a certain label. The
assembler generates the ASCII codes of all the characters in the string and store in consecutive
bytes in memory. The assembler does not add NULL terminator to the string literal value.

Example

str .ASCII "The quick brown fox jumps over the lazy dog."

Related Links

.ASCIIZ

3.3.3.1.2 .ASCIIZ Directive

Syntax

label .ASCIIZ string

Parameters

label

The name of the identifier to which the character string will be assigned to.

string

The string literal to be assigned to label. It must be enclosed with double quotes.

Description

The .ASCIIZ directive is similar to .ASCII except that the assembler automatically adds a NULL
terminator to the string literal value.

Example

str .ASCIIZ "The quick brown fox jumps over the lazy dog."

Related Links

.ASCII

3.3.3.1.3 .CONST Directive

Syntax

label .CONST value

Copyright © 2012 Future Technology Devices International Ltd. 84

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

label

The name of the identifier to which the value will be assigned to.

value

The integer value to be assigned to label. It may be decimal or hexadecimal value.

Description

The .CONST directive creates symbols for use in our assembler expressions. Constants may not be
reset after having once being initialized, and the expression must be fully resolvable at the time of
the assignment. This is the principal difference between symbols declared as .CONST and those
declared as .DB/.DW/.DD.

Example

_value .CONST 0xff

var .CONST 100

Related Links

.DB

.DD

.DW

3.3.3.1.4 .DATA_DEF Directive

Syntax

label .DATA_DEF size

Parameters

label

The name of the identifier.

size

The size (in bytes) of the symbol to be declared.

Description

The .DATA_DEF directive is used to allocate memory for a structure variable. The structure variable
must be initialized with values.

To have a complete declaration of structure variable, the following is the syntax.

argument1 .DATA_DEF argument2

argument1 .DATA_INIT argument2...argument n

:

:

argument1 .DATA_END

Notes

1. The directives must be in correct order.

2. Instances of .DATA_INIT directive will depend on the number of structure fields need to be
initialized.

3. There must be one instance of .DATA_DEF and .DATA_DEF_END in every structure declaration.

Example

See .DATA_INIT example.

Copyright © 2012 Future Technology Devices International Ltd. 85

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Related Links

.DATA_DEF_END

.DATA_INIT

3.3.3.1.5 .DATA_DEF_END Directive

Syntax

label .DATA_DEF_END

Parameters

label

The name of the identifier. This should correspond to the label in .DATA_DEF directive.

Description

The .DATA_DEF_END directive is used to indicate the end of a structure variable declaration. Prior to
this directive, a .DATA_DEF directive must be present.

Example

See .DATA_INIT example.

Related Links

.DATA_DEF

.DATA_INIT

3.3.3.1.6 .DATA_INIT Directive

Syntax

label .DATA_INIT value offset size_of_each_value total_size

Parameters

label

The name of the identifier. This should correspond to the label in .DATA_DEF and .
DATA_DEF_END directives.

value

The value of each field in the structure. For arrays, initialization can be done by separating
values with commas e.g. 10, 20, 30.

The value can be any of the following form:

Form Example

Character 'a'

Numeric 10, 0xff

String Literal "this is a string"

offset

The offset (in bits) of the field member in the structure. For the first field, it should start with
offset 0. Subsequent field offset should be relative to the preceding structure field.

size_of_each_value

The size (in bits) of each member field e.g. 32 bits for field with integer as the datatype.

total_size

The total size of the member field e.g. 96 bits for field which is an integer array having 3
elements.

Copyright © 2012 Future Technology Devices International Ltd. 86

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

The .DATA_INIT directive is used to initialize the member fields of the structure. Number of instances
of this directive will depend on the number of structure fields need to be initialized. This directive
must be within the .DATA_DEF and DATA_DEF_END directives.

Example

C structure:

struct st

{

 char name[10];

 int x;

 char c;

 int y[2];

};

Initial values of the struct variable:

struct st var = { "testing",

 100,

 'c',

 10, 20

 };

Equivalent directives:

var .DATA_DEF 23

var .DATA_INIT "testing" 0 8 80

var .DATA_INIT 100 80 32 32

var .DATA_INIT 'c' 112 8 8

var .DATA_INIT 10, 20 120 32 64

var .DATA_DEF_END

The total size of struct st is 23 bytes.

The 'name' field starts at offset 0 since it is the first member field. The size of char is 8 bits (1 byte) ,
since it is an array of 10, then the total size is 80 bits.

The 'x' field starts at offset 80 since the prior field occupies from 0th-79th bit. The size of int is 32 bits
(4 bytes), then the total size is still 32 bits (4 bytes).

The 'c' field starts at offset 112 (offset of 'x' plus total size of 'x'). The size_of_each_value and
total_size are equal to 8 bits (1 byte).

The 'y' field starts at offset 120 (offset of 'c' plus total size of 'c'). The size_of_each_value is 32 bits
(4 bytes), then the total_size is 64 (8 bytes).

NOTE: The units used is in bits so that it will still cater for bitfields.

Related Links

.DATA_DEF

.DATA_DEF_END

3.3.3.1.7 .DB Directive

Syntax

label .DB num_of_bytes value/s

Parameters

label

The name of the identifier.

num_of_bytes

The number of bytes to be allocated.

value/s

Copyright © 2012 Future Technology Devices International Ltd. 87

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The initial values to be assigned to label.

Description

The .DB directive declares a number of bytes of memory in either DATA, TEXT, or .BSS segment. If the
size of the values is less than num_of_bytes, values will be padded with NULL value/s. If values is a
string, initialization can be done by enclosing the string with double quotes. Other possible way is
that it can be taken one character at a time and it will be comma-separated.

If values is a '?', it means that the data will be part of the BSS segment rather than the DATA or TEXT
segment.

Example

_var1 .DB 10 0xff

var2 .DB 5 "TEST"

var_3 .DB 5 'T', 'E', 'S', 'T'

data .DB 20 ?

Related Links

.DW

.DD

3.3.3.1.8 .DD Directive

Syntax

label .DD num_of_double_words value/s

Parameters

label

The name of the identifier.

num_of_double_words

The number of double words to be allocated.

value/s

The initial values to be assigned to label.

Description

The .DD directive declares a number of double words of memory in either .data, TEXT, or BSS
segment. If the size of the values is less than num_of_double_words , values will be padded with
NULL value/s . If values is a string, initialization can be done by enclosing the string with double
quotes. Other possible way is that it can be taken one character at a time and it will be comma-
separated.

If values is a '?', it means that the data will be part of the BSS segment rather than the DATA or TEXT
segment.

Example

_var1 .DD 10 0xff

var2 .DD 5 "TEST"

var_3 .DD 5 'T', 'E', 'S', 'T'

data .DD 20 ?

Related Links

.DW

.DD

3.3.3.1.9 .DW Directive

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 88

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

label .DW num_of_words value/s

Parameters

label

The name of the identifier.

num_of_words

The number of words to be allocated.

value/s

The initial values to be assigned to label.

Description

The .DW directive declares a number of words of memory in either .data, TEXT, or BSS segment. If
the size of the values is less than num_of_words , values will be padded with NULL value/s . If
values is a string, initialization can be done by enclosing the string with double quotes. Other
possible way is that it can be taken one character at a time and it will be comma-separated.

If values is a '?', it means that the data will be part of the BSS segment rather than the DATA or TEXT
segment.

Example

_var1 .DW 10 0xff

var2 .DW 5 "TEST"

var_3 .DW 5 'T', 'E', 'S', 'T'

data .DW 20 ?

Related Links

.DB

.DD

3.3.3.2 Debugger Directives

Debugger directives are used by the compiler to pass debugging information to the Debugger.

The following are the debug information:

Enum

Structure

Union

File

Line Number

Function

Typedef

Variable

3.3.3.2.1 .ENUM Directive

Syntax

.ENUM name

Parameters

name

The name of the enum declaration. It should be enclosed with double quotes.

Description

The .ENUM directive is used to pass the name of the enum as part of the enum debug information.

Copyright © 2012 Future Technology Devices International Ltd. 89

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

For a complete enum declaration, the following must be the syntax:

.ENUM name_of_enum

.ENUMERATOR name value

:

:

.ENUM_END name_of_enum

Notes

1. Directives should be in proper order.

2. Instances of .ENUMERATOR directive will depend on the number of enumerators present.

3. The 3 directives should be present.

Example

Related Links

.ENUMERATOR

.ENUM_END

3.3.3.2.2 .ENUMERATOR Directive

Syntax

.ENUMERATOR name value

Parameters

name

The name of the enumerator. It should be enclosed with double quotes.

value

The value of the enumerator.

Description

The .ENUMERATOR directive is used to specify an enum value. Each .ENUMERATOR directive
corresponds to one enumerator, thus at least one instance of this directive must be present in
setting the enum debug information.

For a complete enum declaration, the following must be the syntax:

.ENUM name_of_enum

.ENUMERATOR name value

:

:

.ENUM_END name_of_enum

Example

See example in .ENUM.

Related Links

.ENUM

.ENUM_END

3.3.3.2.3 .ENUM_END Directive

Syntax

.ENUM_END name

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 90

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

name

The name of the enum declaration which should correspond to the name in .ENUM directive.
 It should be enclosed with double quotes.

Description

The .ENUM_END directive is used to indicate the end of an enum declaration. Prior to this, a .ENUM
directive must be present.

For a complete enum declaration, the following must be the syntax:

.ENUM name_of_enum

.ENUMERATOR name value

:

:

.ENUM_END name_of_enum

Example

See example in .ENUM.

Related Links

.ENUM

.ENUMERATOR

3.3.3.2.4 .FILE Directive

Syntax

.FILE filename

Parameters

filename

The filename of the C file. It should be enclosed with double quotes.

Description

The .FILE directive specifies the C filename.

Example

.FILE "filename.c"

3.3.3.2.5 .FUNCTION Directive

Syntax

.FUNCTION function_name modifier1..modifier n

Parameters

function_name

The name of the function. It should be enclosed with double quotes.

modifier

The modifier/s of the function e.g. static, volatile, etc.

Description

The .FUNCTION directive is used to pass a function information from the compiler to the debugger. It
is also used as a mechanism to distinguish a label from a function.

To declare a function, .FUNCTION and .FUNC_END must be indicated.

To complete a function declaration, the following is the syntax:

.FUNCTION argument 1...argument n

.RETURN argument1..argument n

Copyright © 2012 Future Technology Devices International Ltd. 91

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

.PARAMETER argument 1..argument n

:

:

.FUNC_END argument

Notes

1. If the function has no parameters, then .PARAMETER can be omitted from the declaration.

2. .RETURN and .PARAMETER come in any order.

3. .FUNCTION must be the starting directive while .FUNC_END should be the ending directive.

4. Only .PARAMETER can have multiple instances.

Example

C function:

static int function(const int x, const int y)

{

 return(x + y);

}

Equivalent ASM Directives:

function:

.FUNCTION "function"

.RETURN "int" 32 SIGNED NORMAL 3 NORMAL 0 0

.PARAMETER "x" 32 "int" SIGNED NORMAL 11 NORMAL 0 0 1 const

.PARAMETER "y" 32 "int" SIGNED NORMAL 15 NORMAL 0 0 1 const

.... asm instructions here...

.FUNC_END "function"

Related Links

.PARAMETER

.RETURN

.FUNC_END

3.3.3.2.6 .FUNC_END Directive

Syntax

.FUNC_END name

Parameters

name

The name of the function. This should correspond to the name in .FUNCTION directive. The
name must be enclosed with double quotes.

Description

The .FUNC_END directive is used to indicate the end of a function. Prior to .FUNC_END, a .FUNCTION
directive must be present.

Example

See example in .FUNCTION.

Related Links

.FUNCTION

Copyright © 2012 Future Technology Devices International Ltd. 92

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

.PARAMETER

.RETURN

3.3.3.2.7 .LINE Directive

Syntax

.LINE line_number

Parameters

line_number

The line number in the C source file. Line number must be greater than 0.

Description

The .LINE directive is used to pass the line number information for each C statement.

Example

.LINE 10

3.3.3.2.8 .PARAMETER Directive

Syntax

.PARAMETER name size type sign_flag pointer_flag

 offset array_flag array_dimension pointer_dimension

 line_number modifier 1..modifier n

Parameters

name

The name of the parameter.

size

The size (in bits) of the parameter.

type

The datatype of the parameter.

sign_flag

Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type

b) UNSIGNED - unsigned type

pointer_flag

Indicates if the variable is a pointer type. The following are the two possible values:

a) POINTER - pointer

b) NORMAL - not a pointer

offset

The stack offset of the parameter.

array_flag

Indicates if the variable is an array. The following are the possible values:

a) ARRAY - Array

b) NORMAL - Not an array

array_dimension

The dimension of the array. If array_flag is 1, array_dimension must be greater than 0.

pointer_dimension

The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

line_number

Copyright © 2012 Future Technology Devices International Ltd. 93

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The line number in the C source file where the parameter is declared.

modifier

The modifiers of the parameter e.g. const, volatile, etc.

Description

Example

See example in .FUNCTION.

Related Links

.FUNCTION

.RETURN

.FUNC_END

3.3.3.2.9 .RETURN Directive

Syntax

.RETURN datatype size sign_flag pointer_flag

 offset array_flag array_dimension pointer_dimension

Parameters

datatype

The return type of the function.

size

The size (in bits) of the return type.

sign_flag

Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type

b) UNSIGNED - unsigned type

pointer_flag

Indicates if the variable is a pointer type. The following are the two possible values:

a) POINTER - pointer

b) NORMAL - not a pointer

offset

The stack offset of the return value.

array_flag

Indicates if the variable is an array. The following are the possible values:

a) ARRAY - Array

b) NORMAL - Not an array

array_dimension

The dimension of the array. If array_flag is 1, array_dimension must be greater than 0.

pointer_dimension

The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

Description

The .RETURN directive is used to pass the function return type debug information. This directive
should always be present once function debug information is set.

Example

See example in .FUNCTION.

Copyright © 2012 Future Technology Devices International Ltd. 94

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Related Links

.FUNCTION

.PARAMETER

.FUNC_END

3.3.3.2.10 .STRUCT Directive

Syntax

.STRUCT name size

Parameters

name

The name of the structure. It should be enclosed with double quotes.

size

The size (in bits) of the structure.

Description

The .STRUCT directive is used to pass the name of the structure as part of the structure debug
information. This should be the first directive to used once a structure debug information needs to be
passed.

To pass the complete structure information, the following is the syntax:

.STRUCT argument

.STRUCTMEM argument1..argument n

:

:

.STRUCT_END argument

Example

Related Links

.STRUCTMEM

.STRUCT_END

3.3.3.2.11 .STRUCTMEM Directive

Syntax

.STRUCTMEM name datatype size sign_flag pointer_flag offset

 array_flag array_dimension pointer_dimension

Parameters

name

The name of the structure field. It must be enclosed with double quotes.

datatype

The datatype of the structure field.

size

The size (in bits) of the structure field.

sign_flag

Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type

b) UNSIGNED - unsigned type

pointer_flag

Indicates if the structure field is a pointer type. The following are the two possible values:

Copyright © 2012 Future Technology Devices International Ltd. 95

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

a) POINTER - pointer

b) NORMAL - not a pointer

offset

The offset (in bits) of structure field. Offset should start with 0. - Not used

array_flag

Indicates if the structure field is an array. The following are the possible values:

a) ARRAY - Array

b) NORMAL - Not an array

array_dimension

The dimension of the array. If array_flag is 1, array_dimension must be greater than 0.

pointer_dimension

The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

Description

The .STRUCTMEM directive is used to pass the structure field debug information. The number of
instances of this directive depends on how many fields are present within a structure. This directive
should be within .STRUCT and .STRUCT_END.

Example

See example in .STRUCT

Related Links

.STRUCT

.STRUCT_END

3.3.3.2.12 .STRUCT_END Directive

Syntax

.STRUCT_END name

Parameters

name

The name of the structure. This should match with the name in .STRUCT directive.

Description

The .STRUCT_END directive is used to indicate the end of a structure declaration. Prior to .
STRUCT_END, a .STRUCT directive should be present.

Example

See example in .STRUCT.

Related Links

.STRUCT

.STRUCTMEM

3.3.3.2.13 .TYPEDEF Directive

Syntax

.TYPEDEF name type_defined_name

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 96

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

name

The name of the datatype. It must be enclosed with double quotes.

type_defined_name

The new name of the datatype. It must be enclosed with double quotes.

Description

The .TYPEDEF directive is used to pass a typedef debug information.

Example

.TYPEDEF “unsigned int” “uint_32”

3.3.3.2.14 .UNION Directive

Syntax

.UNION name size

Parameters

name

The name of the union. It must be enclosed with double quotes.

size

The size (in bits) of the union.

Description

The .UNION directive is used to pass the name of the union as part of the union debug information.
This should be the first directive to used once a union debug information needs to be passed.

Example

Related Links

.UNIONMEM

.UNION_END

3.3.3.2.15 .UNIONMEM Directive

Syntax

.UNIONMEM name datatype size sign_flag pointer_flag offset

 array_flag array_dimension pointer_dimension

Parameters

name

The name of the union field. It must be enclosed with double quotes.

datatype

The datatype of the union field. It must be enclosed with double quotes.

size

The size (in bits) of the union field.

sign_flag

Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type

b) UNSIGNED - unsigned type

pointer_flag

Indicates if the structure field is a pointer type. The following are the two possible values:

a) POINTER - pointer

b) NORMAL - not a pointer

Copyright © 2012 Future Technology Devices International Ltd. 97

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

offset

The offset of the union field. This is always set to 0.

array_flag

Indicates if the structure field is an array. The following are the possible values:

a) ARRAY - Array

b) NORMAL - Not an array

array_dimension

The dimension of the array. If array_flag is 1, array_dimension must be greater than 0.

pointer_dimension

The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

Description

The .UNIONMEM directive is used to pass the union field debug information. The number of instances
of this directive depends on how many fields are present within a union. This directive should be
within .UNION and .UNION_END.

Example

See example in .UNION.

Related Links

.UNION

.UNION_END

3.3.3.2.16 .UNION_END Directive

Syntax

.UNION_END name

Parameters

name

The name of the structure. This should match with the name in .STRUCT directive.

Description

The .UNION_END directive is used to indicate the end of a structure declaration. Prior to .
UNION_END, a .UNION directive should be present.

Example

See example in .UNION.

Related Links

.UNION

.UNIONMEM

3.3.3.2.17 .VARIABLE Directive

Syntax

.VARIABLE "name" size "datatype" sign_flag pointer_flag offset

 array_flag array_dimension pointer_dimension line_number

 modifier1…modifier n

Parameters

name

Copyright © 2012 Future Technology Devices International Ltd. 98

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The name of the variable.

size

The size of the variable in bits.

datatype

The datatype of the variable.

sign_flag

Indicates if the datatype is signed or unsigned. The following are the two possible values:

a) SIGNED - signed type

b) UNSIGNED - unsigned type

pointer_flag

Indicates if the variable is a pointer type. The following are the two possible values:

a) POINTER - pointer

b) NORMAL - not a pointer

offset

The offset address of the variable in the memory. The following are the possible values:

a) >=0 - Local variables (stack offset)

b) -1 - Global variables

c) -2 - Weak variables

array_flag

Indicates if the variable is an array. The following are the possible values:

a) ARRAY - Array

b) NORMAL - Not an array

array_dimension

The dimension of the array. If array_flag is 1, array_dimension must be greater than 0.

pointer_dimension

The dimension of the pointer. If pointer_flag is 1, pointer_dimension must be greater than
0.

line_number

The line number where the variable is defined in th C source file. This must be greater than
0.

modifier

The list of modifiers e.g. static, volatile, etc.

Description

The .VARIABLE directive is used to specify a variable declaration.

Example

C variable declaration:

volatile int *w[10];

Equivalent ASM Directive:

.VARIABLE "w" 160 "int" SIGNED POINTER -1 ARRAY 1 1 1 volatile

3.3.3.3 End Directive

End directive is used in terminating an asm source program.

3.3.3.3.1 .ENDP Directive

Syntax

.ENDP

Copyright © 2012 Future Technology Devices International Ltd. 99

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameter

None

Description

The .ENDP directive indicates the end of the program. Any instructions after .ENDP shall be
discarded. This is only applicable for TEXT segment.

3.3.3.4 File Inclusion Directive

 File inclusion directive is used to add the contents of an include file into the current file.

3.3.3.4.1 .INCLUDE Directive

Syntax

.INCLUDE filename

Parameters

filename

The name of the include file. The file extension must be .asm. It must be enclosed with
double quotes. Relative or absolute path can be appended into the filename. In cases
wherein path can be eliminated in filename, the path can be set using the -I command-line
option or it may be set using the VINASM_INCLUDE environment variable.

Description

The .INCLUDE directive is used to tell the assembler to treat the contents of the include file as if
those contents are part of the current asm file.

Examples

.INCLUDE "include.asm"

.INCLUDE "path/include.asm"

3.3.3.5 Location Control Directives

Location control directives are used to control the location counter or current section.

3.3.3.5.1 .ABS Directive

Syntax

.ABS

Parameter

None

Description

The .ABS directive is used to tell the linker that the code generated is absolute and not relocatable.
That is, it allows the programmer to change the way the assembler generates object code.

The .ABS directive must be used for .ORG directives to be heeded by the assembler. If the .ABS
directive is not used, .ORG directives will be ignored.

3.3.3.5.2 .BSS Directive

Syntax

.BSS

.BSS symbol size

Copyright © 2012 Future Technology Devices International Ltd. 100

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

symbol

The name of the symbol to be placed in the BSS segment.

size

The size (in bytes) of the symbol.

Description

If .BSS has no argument, it implies that the assembler will change the current section to .bss.

If .BSS has arguments, it instructs the assembler to define a symbol in the BSS segment and
increments the location counter by size. At this time, the current section is not change to .bss.

3.3.3.5.3 .DATA Directive

Syntax

.DATA

Parameter

None

Description

The .DATA directive is used to declare that the content which follows the asm file is part of the DATA
segment.

3.3.3.5.4 .EVEN Directive

Syntax

.EVEN

Parameter

None

Description

The .EVEN directive directs the assembler to place the following content of the asm file in an even
address. That is, the location counter is adjusted to an even value if it is currently odd. For TEXT
segment, address are in terms of word. On the other hand, address in DATA segment are in terms of
byte.

3.3.3.5.5 .ODD Directive

Syntax

.ODD

Parameter

None

Description

The .ODD directive directs the assembler to place the following content of the asm file in an odd
address. That is, the location counter is adjusted to an odd value if it is currently even. For TEXT
segment, address are in terms of word. On the other hand, address in DATA segment are in terms of
byte.

3.3.3.5.6 .ORG Directive

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 101

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

.ORG address

Parameter

address

The origin address. The address may be decimal or hexadecimal value.

Description

The .ORG directive instructs the assembler to place the content that follows at the specified address.
The operand must be a valid address.

Note that the origin address will only be considered once the assembler is in absolute mode,
otherwise this will be discarded. By default, the assembler is not in absolute mode. The assembler
enables absolute mode using the .ABS directive.

For TEXT segment, address are in terms of word. On the other hand, address in DATA segment are in
terms of byte.

Example

.ORG 0xff

.ORG 255

3.3.3.5.7 .TEXT Directive

Syntax

.TEXT

Parameter

None

Description

The .TEXT directive is used to declare that the content which follows in the asm file is part of code or
TEXT segment of the program.

3.3.3.6 Symbol Declaration Directives

Symbol declaration directives are used to define symbolic constants. Also, these are used in setting
the attribute of a certain symbol.

3.3.3.6.1 .EQU Directive

Syntax

label .EQU value

Parameters

label

The name of the identifier to which the value will be assigned to.

value

The constant value that will be assigned to label.

Description

The .EQU directive assigns a constant value to an identifier.

Examples

address .EQU 0xff

_label .EQU 1000

3.3.3.6.2 .GLOBAL Directive

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 102

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

.GLOBAL export_flag symbol1, ..., symboln

Parameters

export_flag

Indicates if the symbol needs to be exported or not. The following are the possible values:

a) EXPORT - symbol needs to be exported

b) DO_NOT_EXPORT - symbol does not need to be exported

symbol

The name of the symbol to be declared as global.

Description

The .GLOBAL directive lets a particular symbol to be global in scope.

Note: The symbol must be declared first before using it in .GLOBAL directive.

Examples

.GLOBAL main

.GLOBAL func, func1

3.3.3.6.3 .LOCAL Directive

Syntax

.LOCAL symbol1, ..., symboln

Parameters

symbol

The name of the symbol to be declared as local.

Description

The .LOCAL directive lets a particular symbol to be local in scope, thus the symbol is just visible
within the file.

Note: The symbol must be declared first before using it in .LOCAL directive.

Examples

.LOCAL main

.LOCAL func, func1

3.3.3.6.4 .WEAK Directive

Syntax

.WEAK symbol1, ..., symboln

Parameters

symbol

The name of the symbol to be declared as weak.

Description

The .WEAK directive is used for extern variables.

Note: In order for a weak symbol to be valid, the symbol must have a global declaration in another
file. If not, an error will be issued by the linker once all the object files will be linked.

Examples

.WEAK main

.WEAK func, func1

Copyright © 2012 Future Technology Devices International Ltd. 103

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.4 Machine Instructions

VNC2 offers various instructions. The following are the categories of the instructions:

CPU General

CPU Stack Operation

CPU Memory Operation

CPU Bitwise Shift Operation

CPU Logic Operation

CPU Arithmetic Operation

CPU Bitwise Operation

CPU I/O Operation

CPU Comparison

CPU Program Flow

3.3.4.1 CPU General Instructions

These set of instructions describes the general operations of the CPU. This includes flag handling,
interrupts, CPU states and ROM access.

3.3.4.1.1 NOP

Syntax

NOP

Description

The NOP (No Operation) instruction advances the program counter without altering the CPU state.

3.3.4.1.2 HALT

Syntax

HALT

Description

Halt the processor at this instruction. Once the CPU has been halted it cannot be un-halted.

3.3.4.1.3 WAIT

Syntax

WAIT

Description

Halt the processor at this instruction, and enter low power mode, until an interrupt is received.

The WAIT instruction uses the general interrupt pin only and the debug interrupt pin is ignored.

Syntax

WAIT ia

Description

Halt the processor at this instruction, and enter low power mode, until hardware interrupt ia is
received. If an interrupt other than interrupt ia is received, it will be ignored and the CPU will
resume in low power mode.

Copyright © 2012 Future Technology Devices International Ltd. 104

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The WAIT instruction uses the general interrupt pin only and the debug interrupt pin is ignored.

3.3.4.1.4 STOP

Syntax

STOP

Description

Halt the processor, and shut down all internal subsystems.

3.3.4.1.5 RTS

Syntax

RTS

Description

Return from a subroutine call. 3 bytes are removed from the stack and loaded to the program
counter, PC. The next instruction executes the instruction at this new PC address.

3.3.4.1.6 IRET

Syntax

IRET

Description

Return from an interrupt. 5 bytes are removed from the stack, 2 bytes for the flags register and 3
bytes for the program counter, PC. The next instruction executes the instruction at this new PC
address.

3.3.4.1.7 HCF

Syntax

HCF

Description

N/A

3.3.4.1.8 SAVEF

Syntax

SAVEF

Description

The 16 CPU status flags F are saved in the 16 alternate (mirror) flags F'.

3.3.4.1.9 SWAPF

Syntax

SWAPF

Description

Exchange the 16 primary EMCU flags F with the alternate flag set F'.

3.3.4.1.10 INT

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 105

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

INT ia

Description

Generates a software interrupt. The flags register and program counter are pushed to the stack (5
bytes). The program counter is loaded with the address of the debug interrupt service routine. INTT
is mapped to interrupt 2 and INTD is mapped to interrupt 1.

3.3.4.1.11 SETfl

Syntax

SETfl

Description

Set the flag indexed by fl.

3.3.4.1.12 CLRfl

Syntax

CLRfl

Description

Clear the flag indexed by fl.

3.3.4.1.13 CPYF

Syntax

CPYF fl fu

Description

Copy CPU flag indexed by fu to flag indexed by fl.

3.3.4.1.14 TXL

Syntax

TXL da sa

Description

Reads a single byte of data from the ROM address pointed to by the 32 bit value stored in memory
address sa to memory location specified by da (which may be indirect).

The address pointed to by sa is always a 32 bit value. Note. For all other ROM accesses the ROM is
word addressable. However, for this instruction, the ROM is byte addressable.

3.3.4.1.15 WRCODE

Syntax

N/A

Description

N/A

3.3.4.2 CPU Stack Operation Instructions

The VNC2 operates a stack in hardware with a dedicated stack pointer.

Copyright © 2012 Future Technology Devices International Ltd. 106

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.4.2.1 PUSHF

Syntax

PUSHF

Description

Push the flags register to the stack (2 bytes).

3.3.4.2.2 POPF

Syntax

POPF

Description

Retrieve the flags register from the stack (2 bytes).

3.3.4.2.3 SP_INC

Syntax

SP_INC $b

Description

Increment the stack pointer (SP) by an 8-bit constant value. This has the effect of removing entries
from the stack.

3.3.4.2.4 SP_DEC

Syntax

SP_DEC $b

Description

Decrement the stack pointer (SP) by an 8-bit constant value. This creates additional uninitialised
entries on the stack.

3.3.4.2.5 SP_WR#

Syntax

SP_WR# da $b

Description

Copy the value from a specified memory address to a specified offset from the stack pointer SP. The
offset may be up to 255 bytes.

3.3.4.2.6 SP_RD

Syntax

SP_RD# da $b

Description

Read the memory location at a specified offset from the stack pointer SP, and copy that value to a
specified memory address. The offset may be up to 255 bytes.

3.3.4.2.7 SP_STORE

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 107

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

SP_STORE da

Description

Store the stack pointer (WORD) value at a specified memory address. The di bit determines whether
the associated stack pointer store is direct or indirect.

3.3.4.2.8 SP_LOAD

Syntax

SP_LOAD $w

Description

Load a constant value to the stack pointer register (SP).

Syntax

SP_LOAD sa

Description

Load the stack pointer with the WORD value at a specified memory location. The si bit determines
whether the associated stack pointer load is direct or indirect.

3.3.4.2.9 PUSH#

Syntax

PUSH8 $b

Description

Decrement the SP by 1 and Store a BYTE constant d[7..0] on the stack at the memory location
pointed to by the new SP.

Syntax

PUSH16 $w

Description

Decrement the SP by 2 and store a WORD constant d[15..0] on the stack at the memory location
pointed to by the new SP.

Syntax

PUSH32 $d

Description

Decrement the SP by 4 and store a DWORD constant d[31..0] on the stack at the memory location
pointed to by the new SP.

Syntax

PUSH# sa

Description

Decrement the SP by 1(BYTE), 2(WORD), or 4(DWORD) and load a BYTE, WORD or DWORD value from
memory, and store it at the new SP value.

The si bit determines if the memory load is direct or indirect.

3.3.4.2.10 POP

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 108

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

POP# da

Description

Load a BYTE, WORD or DWORD value from the address pointed to by the stack pointer. Store the
value to a specified memory address. Increment the stack pointer SP by 1, 2 or 4.

The di bit determines if the memory write is direct or indirect.

3.3.4.3 CPU Memory Operation Instructions

The VNC2 has general purpose memory commands to copy data from ROM to memory or between
memory locations.

3.3.4.3.1 LD#

Syntax

LD8 da $b

Description

Store a BYTE constant at a memory address. The di bit determines whether the memory write is
direct or indirect.

Syntax

LD16 da $w

Description

Store a WORD constant at a memory address. The di bit determines whether the memory write is
direct or indirect.

Syntax

LD32 da $d

Description

Store a DWORD constant at a memory address. The di bit determines whether the memory write is
direct or indirect.

3.3.4.3.2 CPYROM

Syntax

CPYROM da sa $sc

Description

Copy a specified number of words from ROM to memory. The sc[7..0] field specifies the number of
words to copy. The di field determines whether the final memory address is the address specified by
da[13..0] or the address stored at that memory address. The sa[13:0] address is an address where
the ROM memory location is read from.

3.3.4.3.3 CPYMEM

Syntax

CPYMEM da sa $sc

Description

Copy a specified number of bytes from memory to memory. The sc[7..0] field specifies the number of
bytes to copy. The si field determines whether the source memory address is the address specified
by da[13..0] or the address stored at that memory address, while the di field determines the final
memory address. The ud bit indicates direction (1 for up and 0 for down).

Copyright © 2012 Future Technology Devices International Ltd. 109

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.4.4 CPU Bitwise Shift Operation Instructions

There are 4 types of bitwise shift operations on the VNC2. These are shift, arithmetic shift, rotate
and rotate with carry which can be performed on 8, 16 or 32 bit values.

Note: Whereas these operations can shift from 0 to 31 places, the RORC and ROLC instructions
only shift by one place. When a value other than 1 is specified for RORC or ROLC, a rotate of 1 will
always be performed.

3.3.4.4.1 SHR#

Syntax

SHR# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

SHR# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

SHR# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

SHR# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.2 SHL#

Syntax

SHL# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

SHL# da sa $sc

Copyright © 2012 Future Technology Devices International Ltd. 110

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

SHL# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

SHL# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.3 SAR#

Syntax

SAR# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

SAR# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

SAR# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

SAR# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is

Copyright © 2012 Future Technology Devices International Ltd. 111

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.4 SAL#

Syntax

SAL# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

SAL# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

SAL# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

SAL# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.5 ROR#

Syntax

ROR# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

ROR# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Copyright © 2012 Future Technology Devices International Ltd. 112

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

ROR# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

ROR# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.6 ROL#

Syntax

ROL# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

ROL# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

ROL# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

ROL# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.7 RORC#

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 113

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

RORC# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

RORC# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

RORC# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

RORC# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.4.8 ROLC#

Syntax

ROLC# da $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to the same memory address. The di bit determines
whether the memory load/stores are direct or indirect load/stores.

Syntax

ROLC# da sa $sc

Description

Loads a BYTE,WORD, OR DWORD value from memory, performs the logical shift operation specified by
op[2..0] and sc[4..0], and stores the result to a different memory address. The di and si bits
determine whether the memory load/stores are direct or indirect load/stores.

Syntax

ROLC# da ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is

Copyright © 2012 Future Technology Devices International Ltd. 114

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

stored to the second data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

Syntax

ROLC# da sa ta

Description

Loads a BYTE,WORD, OR DWORD data value, and a shift count from two separate memory locations,
and performs the logical shift operation specified by op[2..0] and the loaded shift count. The result is
stores to the original data address. The di and ti bits determine whether the memory load/stores are
direct or indirect load/stores.

3.3.4.5 CPU Logic Operation Instructions

The VNC2 supports various bitwise logic commands. Logic operations can be performed on 8, 16 or
32 bit values.

3.3.4.5.1 AND#

Syntax

AND8 da $b

Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.

Syntax

AND16 da $w

Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

AND32 da $d

Description

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

AND# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.

Syntax

AND# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value

Copyright © 2012 Future Technology Devices International Ltd. 115

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.5.2 OR#

Syntax

OR8 da $b

Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.

Syntax

OR16 da $w

Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

OR32 da $d

Description

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

OR# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.

Syntax

OR# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value
loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.5.3 XOR#

Syntax

XOR8 da $b

Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.

Copyright © 2012 Future Technology Devices International Ltd. 116

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

XOR16 da $w

Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

XOR32 da $d

Description

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

XOR# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.

Syntax

XOR# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value
loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.5.4 XNOR#

Syntax

XNOR8 da $b

Description

Loads a data BYTE from memory, performs a logical operation on it, using the BYTE constant b[7..0]
as the second operand, and stores the result to the same memory address. The di bit determines
whether the associated memory load/store is direct or indirect.

Syntax

XNOR16 da $w

Description

Loads a data WORD from memory, performs a logical operation on it, using the WORD constant w
[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

XNOR32 da $d

Description

Copyright © 2012 Future Technology Devices International Ltd. 117

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Loads a data DWORD from memory, performs a logical operation on it, using the DWORD constant d
[31..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

XNOR# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it, using a value
loaded from a second memory location as the second operand, and stores the result to the second
memory address. The si and di bits determine whether the associated memory load/store is direct or
indirect.

Syntax

XNOR# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs a logical operation on it using a value
loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6 CPU Arithmetic Operation Codes

The VNC2 supports arithmetic operations performed on 8, 16 or 32 bit values.

Operand Order

Arithmetic operations are calculated using two or three operand instructions.

2 Operands

For two operand instructions the first operand is both the destination and the first term in the
expression. The second operand is the second term in the expression.

This can be represented as:

a <- a operation b

Where the equivalent machine instruction would be:

operation a b

3 Operands

The first operand is exclusively for the result. The second and third are the first and second terms in
the expression.

To write this as an expression:

a <- b operation c

Where the equivalent machine instruction would be:

operation a b c

3.3.4.6.1 ADD#

Syntax

ADD8 da $b

Description

Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 118

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

ADD16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

ADD32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

ADD# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

ADD# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.2 ADC#

Syntax

ADC8 da $b

Description

Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

ADC16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

ADC32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di

Copyright © 2012 Future Technology Devices International Ltd. 119

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

bit determines whether the associated memory load/store is direct or indirect.

Syntax

ADC# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

ADC# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.3 SUB#

Syntax

SUB8 da $b

Description

Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

SUB16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

SUB32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

SUB# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

SUB# da sa ta

Copyright © 2012 Future Technology Devices International Ltd. 120

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.4 SBC#

Syntax

SBC8 da $b

Description

Loads a data BYTE from memory, performs an arithmetic operation on it, using the BYTE constant b
[7..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

SBC16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

SBC32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

SBC# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

SBC# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.5 MUL#

Syntax

MUL16 da $w

Description

Copyright © 2012 Future Technology Devices International Ltd. 121

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

MUL32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

MUL# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

MUL# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.6 DIV#

Syntax

DIV16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

DIV32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

DIV# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Copyright © 2012 Future Technology Devices International Ltd. 122

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

DIV# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.7 REM#

Syntax

REM16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

REM32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

REM# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

REM# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.8 NEG#

Syntax

NEG16 da $w

Description

Loads a data WORD from memory, performs an arithmetic operation on it, using the WORD constant
w[15..0] as the second operand, and stores the result to the same memory address. The di bit
determines whether the associated memory load/store is direct or indirect.

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 123

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

NEG32 da $d

Description

Loads a data DWORD from memory, performs an arithmetical operation on it, using the DWORD
constant d[31..0] as the second operand, and stores the result to the same memory address. The di
bit determines whether the associated memory load/store is direct or indirect.

Syntax

NEG# da sa

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it, using a
value loaded from a second memory location as the second operand, and stores the result to the
second memory address. The si and di bits determine whether the associated memory load/store is
direct or indirect.

Syntax

NEG# da sa ta

Description

Loads a data BYTE, WORD, or DWORD from memory, performs an arithmetic operation on it using a
value loaded from a second memory location as the second operand, and stores the result to a third
memory address. The si, ti, and di bits determine whether the associated memory load/store is direct
or indirect.

3.3.4.6.9 INC#

Syntax

INC# da $b

Description

Increment the BYTE, WORD, or DWORD value at the specified memory location. The di bit determines
whether the memory access is direct or indirect.

3.3.4.6.10 DEC#

Syntax

DEC# da $b

Description

Decrement the BYTE, WORD, or DWORD value at the specified memory location. The di bit determines
whether the memory access is direct or indirect.

3.3.4.7 CPU Bitwise Operation Instructions

This class of instruction performs bit-wise comparisons and inversion. Bit operations can be made
with 8, 16 or 32 bit values.

3.3.4.7.1 BTST#

Syntax

BTST# sa $b [fl]

Description

Load a BYTE, WORD, or DWORD value from memory. Copy the logic value of the bit specified by b
[4..0] to the EMCU flag specified by the fl[3..0] bits. The si bit determines whether the memory
access is direct or indirect. Default flag to change is the Z flag.

Copyright © 2012 Future Technology Devices International Ltd. 124

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.4.7.2 BCLR#

Syntax

BCLR# da $b

Description

Load a BYTE, WORD, or DWORD value from memory. Set the bit specified by b[4..0] to zero, and
store the result in the same memory location. The di bit determines whether the memory access is
direct or indirect.

3.3.4.7.3 BSET#

Syntax

BSET# da $b

Description

Load a BYTE, WORD, or DWORD value from memory. Set the bit specified by b[4..0] to one and store
the result in the same memory location. The di bit determines whether the memory access is direct
or indirect.

3.3.4.7.4 INV#

Syntax

INV# da $b

Description

Invert the BYTE, WORD, or DWORD value at the specified memory location. The di bit determines
whether the memory access is direct or indirect.

Syntax

INV# da sa

Description

Load the BYTE, WORD, or DWORD value at a specified memory location, invert it, and store to
another location. The di and si bits determines whether the associated memory access is direct or
indirect.

3.3.4.7.5 CPY#

Syntax

CPY# da sa

Description

Load the BYTE, WORD, or DWORD value at a specified memory location, copy it, and store to another
location. The di and si bits determines whether the associated memory access is direct or indirect.

3.3.4.8 CPU I/O Operation Instructions

The VNC2 supports commands to perform operations on I/O ports.

3.3.4.8.1 OUTPORT

Syntax

OUTPORT io $b

Description

Copyright © 2012 Future Technology Devices International Ltd. 125

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Write the constant BYTE value b[7..0] to the I/O port specified by io[8..0]

Syntax

OUTPORT io sa

Description

Copy a BYTE value from memory to the I/O port specified by io[8..0]. The si bit determines whether
the memory load/store operation is direct or indirect.

3.3.4.8.2 ANDPORT

Syntax

ANDPORT io $b

Description

Read a BYTE value from the I/O port specified by io[8..0]. AND the value with the BYTE constant b
[7..0] and write the result back to the same I/O port.

Syntax

ANDPORT io da $b

Description

Read a BYTE value from the I/O port specified by io[8..0]. AND the value with the BYTE constant b
[7..0], and write the result to a memory location. The di bit determines whether the memory write
operation is direct or indirect.

3.3.4.8.3 ORPORT

Syntax

ORPORT io $b

Description

Read a BYTE value from the I/O port specified by io[8..0]. OR the value with the BYTE constant b[7..0]
and write the result back to the same I/O port.

Syntax

ORPORT io da $b

Description

Read a BYTE value from the I/O port specified by io[8..0]. OR the value with the BYTE constant b
[7..0], and write the result to a memory location. The di bit determines whether the memory write
operation is direct or indirect.

3.3.4.8.4 INPORT

Syntax

INPORT io da

Description

Copy a BYTE value from the I/O port specified by io[8..0] to memory. The di bit determines whether
the memory load/store operation is direct or indirect.

3.3.4.8.5 PORTTST

Syntax

PORTTST io $b [fl]

Copyright © 2012 Future Technology Devices International Ltd. 126

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Read a BYTE value from the I/O port specified by io[8..0] and copy the value of the bit specified by b
[3..0] to the EMCU flag specified by fl[3..0] Default flag to change is the Z flag.

3.3.4.9 CPU Comparison Instructions

The compare instruction compares the sa value to an immediate or da value. The sa parameter is
used as the ‘A’ value and the immediate or da parameter is the ‘B’ value in the condition.

3.3.4.9.1 CMP#

Syntax

CMP8 sa $b

Description

Load the BYTE value at a specified memory address, and compare to a BYTE constant b[7..0], setting
the O S C and Z flags according to the result. The si bit determines whether the memory reference is
direct or indirect.

Syntax

CMP16 sa $w

Description

Load the WORD value at a specified memory address, and compare to a WORD constant w[15..0],
setting the O S C and Z flags according to the result. The si bit determines whether the memory
reference is direct or indirect.

Syntax

CMP32 sa $d

Description

Load the DWORD value at a specified memory address, and compare to a DWORD constant d[31..0],
setting the O S C and Z flags according to the result. The si bit determines whether the memory
reference is direct or indirect.

Syntax

CMP# sa da

Description

Load two BYTE, WORD or DWORD values from two memory addresses, and compare them, setting
the O S C and Z flags according to the result. The si and di bits determine whether the associated
memory reference is direct or indirect.

3.3.4.10 CPU Program Flow Instructions

Program flow is controlled by straight jumps or calls, indirect jumps and calls or conditional jumps
and calls. Conditional jumps and calls are made either on flags states or on comparison results.

3.3.4.10.1 JUMP

Syntax

JUMP ro

Description

Load the program counter PC with the value specified by ro. The next instruction will use the new
address, with the effect that program execution jumps to that location.

Copyright © 2012 Future Technology Devices International Ltd. 127

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

JUMP (sa)

Description

Load the program counter PC with the value specified by sa. The next instruction will use the new
address, with the effect that program execution jumps to that location.

3.3.4.10.2 JGT

Syntax

JGT ro

JGTS ro

Description

If the flags indicate a greater than result, jump to the rom address (ro), otherwise continue to the
next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an
S on the assembly instruction.

3.3.4.10.3 JGE

Syntax

JGE ro

JGES ro

Description

If the flags indicate a greater than or equal to result, jump to the rom address (ro), otherwise
continue to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is
indicated by an S on the assembly instruction.

3.3.4.10.4 JLT

Syntax

JLT ro

JLTS ro

Description

If the flags indicate a less than result, jump to the rom address (ro), otherwise continue to the next
address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an S on
the assembly instruction.

3.3.4.10.5 JLE

Syntax

JLE ro

JLES ro

Description

If the flags indicate a less than or equal to result, jump to the rom address (ro), otherwise continue
to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated
by an S on the assembly instruction.

3.3.4.10.6 JNfl

Syntax

JNfl ro

Copyright © 2012 Future Technology Devices International Ltd. 128

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

If the flag specified by fl[3..0] is zero, then jump to the ROM address RO, otherwise continue to the
next instruction.

3.3.4.10.7 Jfl

Syntax

Jfl ro

Description

If the flag specified by fl[3..0] is set then jump to the ROM address RO, otherwise continue to the
next instruction.

3.3.4.10.8 CALL

Syntax

CALL ro

Description

Store the value of the program counter + 2 (the address of the next instruction) in the memory
address pointed to by SP. Decrement SP by 3. Load the new ROM address RO to the program
counter PC, and continue execution from the new address.

Syntax

CALL (sa)

Description

Store the value of the program counter + 2 (the address of the next instruction) in the memory
address pointed to by SP. Decrement SP by 3. Load the new ROM address from the memory location
specified by sa to the program counter PC, and continue execution from the new address.

3.3.4.10.9 CALLGT

Syntax

CALLGT ro

CALLGTS ro

Description

If the flags indicate a greater than result, jump to the ROM address (ro), otherwise continue to the
next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an
S on the assembly instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.10 CALLGE

Syntax

CALLGE ro

CALLGES ro

Description

If the flags indicate a greater than or equal to result, jump to the ROM address (ro), otherwise
continue to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is
indicated by an S on the assembly instruction.

Copyright © 2012 Future Technology Devices International Ltd. 129

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.11 CALLLT

Syntax

CALLLT ro

CALLLTS ro

Description

If the flags indicate a less than result, jump to the ROM address (ro), otherwise continue to the next
address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated by an S on
the assembly instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.12 CALLLE

Syntax

CALLLE ro

CALLLES ro

Description

If the flags indicate a less than or equal to result, jump to the ROM address (ro), otherwise continue
to the next address. The sg bit determines a signed (1) or unsigned (0) comparison. This is indicated
by an S on the assembly instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.13 CALLNfl

Syntax

CALLNfl ro

Description

If the EMCU flag specified by fl[3..0] is zero, then branch to the new address RO storing the return
address, otherwise continue to the next instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

3.3.4.10.14 CALLfl

Syntax

CALLfl ro

Description

If the EMCU flag specified by fl[3..0] is set, then branch to the new address RO storing the return
address, otherwise continue to the next instruction.

If the branch is taken, store the value of the program counter + 2 (the address of the next
instruction) in the memory address pointed to by SP. Decrement SP by 3. Load the new ROM address
RO to the program counter PC, and continue execution from the new address.

Copyright © 2012 Future Technology Devices International Ltd. 130

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.3.5 Error Reference

Assembler error messages take the following form:

<filename> line <line number>: (error|warning|info) A<code> <description>

Error codes take one of the following values.

Error codes Description

1000 neither instruction nor directive

1001 invalid directive syntax.

1002 not supported directive

1003 not supported instruction

1004 instruction format not supported

1005 syntax error.

2000 missing .ENUM directive.

2001 invalid line number.

2002 missing ENUM name.

2003 missing .STRUCT directive.

2004 missing struct name.

2005 struct/union name mismatch.

2006 missing .UNION directive.

2007 missing union name

2008 function name mismatch.

2009 enum name mismatch

2010 missing enumerators

2011 missing struct/union members

2012 missing .FUNCTION directive

2013 missing .FUNC_END directive

2014 missing function name.

2015 missing parameter name

2016 missing datatype name

2017 missing function return type

2018 invalid size specified.

2019 invalid array dimension.

2020 invalid pointer dimension

2021 invalid signed/unsigned flag.

2022 invalid array flag.

2023 invalid pointer flag.

2024 duplicate return type

2025 missing .DATA_DEF directive.

2026 missing struct initialized value/s.

2027 multiple global declaration.

3000 failed to assemble instruction

3001 instruction not allowed in data section

3002 unknown section '%s'

3003 invalid section type

Copyright © 2012 Future Technology Devices International Ltd. 131

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3004 invalid section flag

3005 symbol not yet declared '%s'.

3006 symbol not found in string table

3007 invalid filename

3008 missing .FILE directive.

3009 failed to create object file.

3010 symbol does not exist in .symtab

3011 symbol does not need to be relocated

3012 unresolved symbol '%s'

3013 invalid ORG value, address overlaps

3014 indirect access is not allowed.

3015 value is greater than the operand size.

3016 duplicate symbol

3017 directive not allowed in text section.

3018 directive is only allowed in text section.

4000 unknown datatype '%s'

4001 failed to create .debug_abbrev section.

4002 failed to create .debug_info section.

5000 malloc() failed

5001 internal error

5002 failed to create .symtab section.

5003 failed to create .rel.text section.

5004 has reached the maximum number of sections.

5005 no entry in symtab yet.

5006 unable to open file '%s'.

5007 unable to open log file.

Example

An error for an undefined label in line 45 will give the following message.

test.asm line 45: (error) C1200 undefined label

3.4 VinL Linker

The linker supports:

archive file processing for linking pre-built libraries

DWARF2 compliant debug file generation

object file in ELF format

output of ROM file for programming and BIN file for debugging

checksum generation for ROM files

Copyright © 2012 Future Technology Devices International Ltd. 132

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.4.1 Linker Command Line Options

The VNC2 Linker command line options are listed below.

VinL [options] [file ...]

Option Description

-e symbol Define Entry Symbol.

-k bytes Set size of stack in bytes

-O Enable optimisations in the linker (for object files only)

-d level Specify the debug level for the linker output

-o filename Set the output filename and path
File extensions will be appended to this filename

-U Specify that full archives are to be included.

-h Print Command help message of linker options

-v Verbose flag

-V Version number

--no-loader User defined program loader

-B Image offset in ROM specified in words
Default is 0x3C0

-T Text section offset in ROM specified in words
Default is zero

-D Data section offset in RAM specified in bytes
Default is zero

Examples

How to view the Linker options?

VinL -h

Application name followed by option name while viewing command line option

How to see version number of linker?

VinL –v

Copyright © 2012 Future Technology Devices International Ltd. 133

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

How to Execute Object files?

VinL object1.obj object2.obj bootloader.obj --no-loader

Linker Application name followed by object files.

How to enable linker optimization?

VinL –O

How to generate the output file?

VinL object1.obj –o=c:\object

or

VinL object1.obj –o=object

Command line specifying an output file of "object" will generate the output files "object.bin" and
"object.rom".

How to Use different commands in linker?

All the command mentioned here are based on GPIOKitt sample project.

How to specify data segment start address? Default Data Segment Start Address is 0x0

VinL.exe kernel.a gpio.a Kitt.obj -U -D 0x20 -o Kitt

How to specify Text Section Start Address? Default is 0x0.

VinL.exe kernel.a gpio.a Kitt.obj -U -T 0x10 -o Kitt

How to specify the Code segment Start Address? Default Code Start Address is 0x3C0. Please
contact customer support as there are implications with moving the start address of the code.

VinL.exe kernel.a gpio.a Kitt.obj -U -B 0x400 -o Kitt

How to specify user defined boot loader and what care needs to be taken?

VinL.exe kernel.a gpio.a Kitt.obj bootloader.obj -e Start --no-loader -U -o Kitt

If you specify the start symbol as "Start". It must also defined as that will be the code entry point.
The default entry symbol is "main".

How to specify the stack size?

VinL.exe kernel.a gpio.a Kitt.obj -k 0x200 -U -D 0x20 -B 0x400 -o Kitt

How to include archive files?

To include archive file -U option must be provided, failing to do so will result in an error being
reported.

3.4.2 Memory and Segment

FLASH - ROM Memory

RAM Memory

Copyright © 2012 Future Technology Devices International Ltd. 134

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

TEXT Segment :

This is the code segment. All C Functions, Procedures etc. are merged together and created as one
text segment. Assembler replaces C functions with CPU specific instructions, so all CPU instructions
are part of this segment. This Segment is part of FLASH(ROM) Memory in Vinculum II.

DATA Segment :

This is the DATA segment. All Global Variables, Structures etc. are merged together and created as
one data segment. DATA segment is the fixed memory locations reserved for global variables of all
type. i.e. char, int, long etc.

BSS Segment :

This is the DATA segment. All uninitialised Global Variables, Structures etc. are merged together and
created as one BSS segment. BSS segment is same as DATA segment, is the fixed memory locations
reserved for uninitialised global variables of all type. Program loader (Part of boot loader)initializes
this segment

RO Segment :

This is the DATA segment. All Global Variables, Structures etc. are merged together and created as
one data segment. DATA segment is the fixed memory locations reserved for global variables of all
type. i.e. char, int, long etc

DEBUG Segment :

This is the Debug segment. Debug information for all sections, variables are part of this section.
Debug segment is not the part of physical memory so it is not part of CPU memory map. This
segments are used by debugger for providing debug information.

3.4.3 Map File

Linker Map file contains following information

RAM and ROM size of CPU

Version info of Linker and Loader

Start address of segment and size of each segment

Symbol information (Address of symbol, symbol name,symbol type, memory type, filename and size
of symbol)

Example for Linker Map File

Copyright © 2012 Future Technology Devices International Ltd. 135

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.4.4 Archive File

VinL linker will support only archive files generated by VinAr tool.

Features

Following is the feature list of archive support in toolchain. This list includes items for both tool and
linker support.

Feature Description Benefit/Reason

Selective Archive
extraction

Selective archive extraction uses
technique to import symbol based on the
symbols required as per the relocation
from application. Global Symbol table
created by archive tool will be used to
extract the data.

This removes need of
including code first and
then removing. This will
help to reduce binary size

Full archive
extraction

This is an option which by default is
disabled

Faster inclusion time

Command line
options

Command line option to archive tool Ease of use

Name Mangling To protect internal working and hide
internal functions from user

Security of code

Debug
information
support

Not Supported Not possible as source
code debugging is not
allowed

Tool compatibility Archive tool is only compatible with FTDI’s
toolchain. Linker will support archives
generated by Archive tool only.

Security of IP and
software

Export symbol
creation

This symbols will be created by archive
tool.

Copyright © 2012 Future Technology Devices International Ltd. 136

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.4.5 Error Reference

Linker error messages take the following form:

<filename>: (error|warning|info) L<code> <description>

Error codes take one of the following values.

Error codes Description

0001 error in command line argument

0002 memory overflow

0003 error invalid parameter

0004 start symbol missing

0005 symbol without section

0006 symbol redefined (symbol name)

0007 symbol allocation error

0008 file allocation

0009 section not supported

0010 error in file open

0011 error in memory allocation

0012 error in parameter

0013 error in parameter section information

0014 error in parameter symbol data

0015 error in parameter in relocation data

0016 error in updating linker variables

0017 invalid archive file

0018 -U option is missing for archive

0019 archive symbol is missing (symbol name)

0020 syntax error

0021 error in maximum code limit

Error Code: command line argument Error

This error means one or more command line parameters to the linker is wrong.

test.obj : (error) L0001 error in command line parameter

Error Code: memory overflow

The generated ROM code was too large to fit into the Flash memory on the device.

test.obj : (error) L0002 memory overflow if text/data/bss sections are large to

corrupt with any of the other section

Error Code: invalid parameter

test.obj : (error) L0003 invalid parameter (generated due to invalid elf format)

Error Code: start symbol missing

An error for a program which does not have a main() function will give the following message. or if
it's user defined

start symbol missing then this error will be issued

test.obj: (error) L0004 start symbol missing

Error Code: symbol without section

Copyright © 2012 Future Technology Devices International Ltd. 137

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Internal error thrown due to incorrect elf format.

Error Code: symbol redefined

Internal error thrown due to incorrect elf format.

Error Code: symbol allocation error

Internal error thrown due to incorrect elf format.

Error Code: file allocation

Internal error thrown due to incorrect elf format.

Error Code: section not supported

Internal error thrown due to incorrect elf format.

Error Code: error in file open

File provided as an input parameter is not found/corrupted.

Error Code: error in memory allocation

Internal error thrown due to incorrect elf format.

Error Code: error in parameter

Internal error thrown due to incorrect elf format.

Error Code: error in updating linker variables

Internal error thrown due to incorrect elf format.

Error Code: error in parameter in relocation data

A function or variable was declared (prototyped) and called but the linker could not find a definition
for the function or variable.

test.obj: (error) L0015 error in parameter in relocation data notRealFunction

Error Code: archive file is not valid and wrong/duplicate archive symbol

This error will be generated if generated archive file is not standard FTDI format.

Error Code: -U option is missing for archive

Command line parameter -U is required since an archive file was used as an input file.

Error Code: archive symbol missing

Internal error for corrupt archive file.

Error Code: syntax error

Internal error for corrupt archive file.

Error Code: maximum code limit

if code size increases beyond FLASH ROM size.

Copyright © 2012 Future Technology Devices International Ltd. 138

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.4.6 Special VNC2 Reference

Certain symbols are defined in the linker which are available to a user program. The ROM file format
includes a data area which can be programmed via a command line application (VinUser Customiser),
a program area which is reserved for future used, a build timestamp and a checksum.

The following are symbols defined in ROM which may be read by a program.

userDataArea 8 word array for user
programmable area

extern rom char userDataArea[16]
extern rom short userDataArea[8]
extern rom long userDataArea[4]

Start Label for start of program

progDataArea 8 word array for program data
area

reserved

progSize 2 word size of program ROM
(first 2 words of progDataArea)

This size specified includes the
timestamp and checksum.

extern rom int progSize[1]

The data accessible from the ROM in this case can only be accessed as an array.

The locations of these data areas (in word offsets) in the ROM file is shown in the following table.

0x00 0x0F reserved

0x10 0x11 progDataArea - progSize

0x12 0x17 progDataArea - reserved

0x18 0x1F userDataArea

When read with the above method, the progSize word is encoded. To convert an int received from
the progSize array to the actual ROM size, swap the order of the first and second bytes and then
swap the third and fourth bytes. The code example shows how to convert to the correct format.

int size;

size = (progSize[0] & 0x00ff00ff) << 8;

size |= (progSize[0] & 0xff00ff00) >> 8;

When the size is read from a ROM file then the byte order is little endian format. The byte swapping
is only required because of the internal architecture of the VNC1.

In addition the ROM file is protected by a build date stamp and checksum at the end of the file. The
locations (in word offsets from the end of the file) are shown in the table below.

0x00 0x00 Checksum

0x03 0x01 Timestamp, 6 bytes:

0x04 High byte - day of month
0x04 Low byte - month
0x03 High byte - year of century
0x03 Low byte - hour (24 hour format)
0x02 High byte - minutes
0x02 Low byte - seconds

There is no direct access to the checksum or timestamp using rom arrays. It is possible to access the
timestamp and checksum through the Flash Access API. Note that the checksum value accessed will
be encoded in the same was as the progSize value.

The checksum is calculated over the whole of the ROM file excluding the timestamp and checksum
areas. i.e. the start of the file to the file size - 4 words. The following code example can be used for
generating or verifying the checksum.

// buffer - ROM file data

// size - size of ROM file data in bytes (including checksum and timestamp)

int generateChecksum(char *buffer, unsigned long size)

Copyright © 2012 Future Technology Devices International Ltd. 139

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

{

int checksum = 0;

int dword = 0;

unsigned int count = 0;

size -= 8;

for (count = 0; count < size; count += sizeof(int))

{

if (((size % sizeof(int)) != 0) && ((count + sizeof(int)) > size))

{

// special handling for file not finishing on int boundary

memcpy(&dword, &message[count], (size % sizeof(int)));

}

else

{

memcpy(&dword, &message[count], sizeof(int));

}

dword = dword + 0x00000001;

checksum = checksum + dword;

}

checksum = ((checksum & 0x0000ffff) + ((checksum >> 16) & 0x0000ffff));

return checksum;

}

Examples

To read in the user data area:

extern rom char userDataArea[16];

void getProgSize(char *buff16byte)

{

 int x;

 for (x=0; x < 16; x++)

 {

 buff16byte[x] = userDataArea[x];

 }

}

To query the program size:

extern rom int progSize[1];

int getProgSize()

{

 int size;

 size = (progSize[0] & 0x00ff00ff) << 8;

 size |= (progSize[0] & 0xff00ff00) >> 8;

 return size;

}

3.5 VinIDE

The Integrated Development Environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development. The IDE consists of:

A source code editor

A compiler

Build automation tools

A debugger

3.5.1 About VinIDE

VinIDE is an Integrated Development Environment that can be used to create user applications for
the VNC2 chip. It has its own built-in source editor to help you write your own source files. It also

Copyright © 2012 Future Technology Devices International Ltd. 140

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

allows you to build your source files into a binary output by using the integrated tools in the
toolchain namely:

The Compiler (VinC.exe)

The Assembler (VinAsm.exe)

The Linker (VinL.exe)

The Debugger (VinDbg.dll)

It also allows the user to manage the files in a project.

3.5.2 The User Interface

The IDE is divided up into 6 parts : the Tabbed Toolbar, the Source Code Editor, the Project
Manager, the Messages Window, the Watch list Window, and the Memory Window.

3.5.2.1 The Tabbed Toolbar

The Tabbed Toolbar is context-sensitive, automatically displaying the functions relevant to what you
are doing at the moment. Functions that cannot be used in the current context are greyed out.

3.5.2.1.1 The File tab

The File tab group is a collection of file IO-related commands that is available for the user. Below are
the commands on the File tab group.

Copyright © 2012 Future Technology Devices International Ltd. 141

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

File Group

Open

Opens an existing file in the editor

New

Adds a new file to the current project

Save

Saves the active file in the editor to the disk

Save As

Saves, in a different filename, the active file on the editor

Save All

Saves the project as well as all the edited files

Close

Closes the active file in the editor

Add

Adds a an existing file to the current project

Remove

Removes the active file from the current project

Project Group

Open

Opens a project. Will close the any currently open project first.

New

Creates a new project using the Application Wizard. Choose from Application Wizard, Vinco
Wizard or a blank template project.

Modify

Opens the Application Wizard to modify an existing project

Save

Saves the project to the disk

Save As

Saves the project on a different filename

Close

Closes the project

Copyright © 2012 Future Technology Devices International Ltd. 142

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.2.1.2 The Edit tab

The Edit tab group is a collection of commands that are used in conjunction with the text editor.

3.5.2.2 The Source Code Editor

This is the large area below the tabbed toolbar where the contents of the files in the project are
shown and edited. It has many of the features of an advanced text editor such as multiple opened
tabbed files, line highlighting, syntax styling, and many more.

3.5.2.3 The Project Manager

The Project Manager displays the project in a tree view form showing the files that are included in
the application. Many of the commands in the toolbar can also be quickly accessed in the Project
Manager thru the right click mouse button.

Copyright © 2012 Future Technology Devices International Ltd. 143

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.2.4 The Messages Window

The Messages Window displays the information that are being sent by the other tools such as the
compiler and linker as well as the result from the search commands.

3.5.2.5 The Watchlist Window

The Global Watch Window is used to evaluate the global values of variables and expressions..

Copyright © 2012 Future Technology Devices International Ltd. 144

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The Local Watch Window is used to evaluate the local values of variables and expressions inside the
function.

The Quick Watch window is used to evaluate local or global variables and expressions at any point
of time.

3.5.2.6 The Memory Window

The Memory Window is used to display and evaluate the current contents of the memory of the
target chip.

Copyright © 2012 Future Technology Devices International Ltd. 145

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.2.7 The Breakpoint Window

The Breakpoint Window is used to display and manage the breakpoint for debugging the project
application

Note : Any number of breakpoints can be entered but only first three will be enabled and active
during debugging.

3.5.2.8 Managing the Panels

VinIDE is equipped with docking facilities that enables the user to drag the panels and then dock
them to docking sites or stack them on top of one another. The panels could also be pinned to the
sides and be visible only when the mouse hovers on top of their tabs. Or the user could simply hide
the panels and display them whenever so they chooses.

Copyright © 2012 Future Technology Devices International Ltd. 146

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Please note that when you close the IDE the last states of the panels will be saved and will be used
when the IDE starts again so that the user will not have to rearrange them every time the IDE
starts.

3.5.2.8.1 Docking/Undocking Panels

To dock a panel simply click on the title bar and drag to any of the docking zone selectors that will de
displayed. The blue preview highlight will show you where the panel will be docked if you release it.

Copyright © 2012 Future Technology Devices International Ltd. 147

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

To undock a panel just click on the title bar again and drag to any area in the main window.

3.5.2.8.2 Stacking Panels

Stacking panels is just another way of docking them. But while docking a panel in a docking site will
make the two panels occupy half of the area, stacking them together will enable both panels to use
the whole area for themselves but with only one of the stacked panels being displayed at any given
time.

To stack a panel on top of another panel just click the title bar and drag on top of the middle docking
zone selector you want an then release.

Copyright © 2012 Future Technology Devices International Ltd. 148

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Below is how the panels will be stacked together.

3.5.2.8.3 Pinning Panels

Another way to save display area aside from stacking panels together is by pinning them on the
sides of your main window so that only a tab of that panel will appear. Then just hover your mouse
over that tab to display the entire panel.

To pin a window to its side simply click on the pin icon on the title bar of that panel.

Below is an example of how pinning works. The Memory window is pinned to the side with only the
tab being displayed. The entire panel will slide out if the mouse is hovered on top of the tab.

Copyright © 2012 Future Technology Devices International Ltd. 149

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.2.8.4 Hiding Panels

One last way to get more display area is to simply display the panels that you may need and then
hiding those that you don't. This can be easily done just by clicking the close button on the right side
of each panel or by unchecking them on the View tab group on the Tabbed Toolbar. Closing them will
cause them to be hidden from view completely.

To display the hidden panel simply go to the View tab group on the toolbar and check the panel you
want to be displayed.

3.5.3 Using VinIDE

Starting the VinIDE from the Start Menu or the shortcut to the executable on the desktop will display
a splash screen and the main window.

3.5.3.1 Application Wizard

The application wizard has been designed to guide developers through the creation of a template
application. It allows the developer to tailor their application by selecting the module it is designed
for, the interfaces that are to be connected to the chip and the routing of interface signals to their
appropriate headers.

The application wizard is available from the Project category of the File tab:

The wizard generates a new project file containing two C files with: all IOMux correctly routed for the
specific module; all appropriate header and library files referenced; driver initialization; kernel setup;
and finally thread creation. By removing the need to perform these steps by hand it helps to cut
down design-time for the developer.

The wizard has been broken down into a number of logical steps to make the task of creating a
template application more straight forward. Each of the steps is listed here:

New Project - Name the new project and specify the location it is to be saved.

Target Module - Select the VNC2 module that the application is being designed for.

Drivers - Choose the Hardware Device Drivers and Layered Drivers the chip is to communicate
with.

IOMux - Route the IOMux for the appropriate VNC2 module.

Kernel - Configure the VOS Kernel.

Threads - Create any number of application threads.

Summary - Summarizes all of the above information prior to creating a new project.

At present the application is run-once but it is our intention, with future releases, to allow the wizard
to be run any number of times to accommodate changes to all constituent parts.

Copyright © 2012 Future Technology Devices International Ltd. 150

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.1.1 New Project

The first stage is to give the new project a name and specify the directory in which the application
will be created.

A solution may encompass a number of different projects, if this project forms part of a larger body of
work the Solution Name may be entered in the box provided.

To create a new directory with the specified Project Name within the Project Directory, check the
Create Directory for Project box.

3.5.3.1.2 Target Module

At present the wizard can be configured for the Vinculo, V2Eval Board or a Discrete chip. A Discrete
device represents a chip that is not connected to a Vinculo or V2Eval board.

Copyright © 2012 Future Technology Devices International Ltd. 151

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The V2Eval and Discrete chip can be configured for all, two or one of the available 32pin, 48pin or
64pin package types. The Vinculo is only available with a 64pin package therefore this choice is not
available.

Selecting the correct module at this stage will help in the process of routing the IOMux signals to
their appropriate headers later.

3.5.3.1.3 Drivers

Driver selection, including all layered drivers, can be done using the Wizard. It is important to note
that all drivers in the system have a number of dependencies.

As an example of a dependency: selecting the BOMS driver will require the USB Host 1 or USB Host 2
driver to be selected; the Host driver is a dependency of this layer and BOMS must sit on top of it.

Top-Down Selection

The top-down driver selection involves selecting drivers at the highest levels and working down
through the driver layers to reach the physical interface layer on the hardware. Here the FAT driver
has been used as an example.

Selecting the FAT driver as the top most layer gives a number of options for lower level drivers. From
here the developer may select to use the SD Card Driver or a BOMS driver. If the SD Card Driver is
selected (Figure 1) the SPI Master driver must also be selected due to the layers forming a
dependency. If the BOMS driver is selected (Figure 2) the developer must then choose to use the
Host 1 or Host 2 layer drivers.

Note that the question mark symbol within the treeview indicates that a choice must be made on a
lower level to complete the driver dependencies.

Copyright © 2012 Future Technology Devices International Ltd. 152

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 1: SD Card layered driver selection.

Copyright © 2012 Future Technology Devices International Ltd. 153

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Figure 2: BOMS driver selection.

3.5.3.1.4 IOMux

The wizard provides a graphical representation of the VNC2 chip/module to aid with routing signals
for the IOMux. Drivers that have been selected in the previous Drivers section appear in a treeview
on the left hand side of the screen. Note: the USB Host/Slave interfaces cannot be routed and so
will not appear in the list.

Routing Signals

When an interface signal from the treeview is clicked all pins that this signal can be routed to will be
shown in red, pins that this signal is currently routed to will be displayed in green. Interface signals
can be dragged and dropped from the treeview onto accepting red pins. Alternatively, individual
pins on the board can be clicked and a signal assigned through the pin context menu (Figure 1).

Figure 1: Pin Context Menu.

Copyright © 2012 Future Technology Devices International Ltd. 154

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Some signals on the board can have a different sense depending on their role, for example, GPIO
signals can be routed as Input, Output or Bi-Directional. To accommodate this, the sense of signals
can be changed through the pin context menu (Figure 1).

IO Cell Config

IO Cell configuration can be achieved through the pin context menu. This allows for changes to drive
strength, slew rate, trigger value and pull setting.

Debugger Pin

Each chip/module comes with a debugger pin routed by default. The debugger pin provides an
interface for the IDE and the chip to communicate over to allow flashing memory, setting breakpoints
etc. It is possible to remove the debugger routing, however, FTDI recommend that the debugger
signal is not re-routed and is indeed included in all designs.

Disable Output

Output signals that have been moved from their default pin location will still drive the signal on their
default pin. To turn this feature off select Disable Output from the pin context menu.

Vinco

V2Eval

Copyright © 2012 Future Technology Devices International Ltd. 155

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Note: Signals on the V2Eval appear in multiple locations on the board therefore the Wizard will
indicate all the pins where this signal appears in green.

Discrete

Copyright © 2012 Future Technology Devices International Ltd. 156

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.1.5 Kernel

The Kernel screen allows the developer to customize how the VOS Kernel is initialized in their
application. The following options can be configured:

CPU Speed: Refer to section vos_set_clock_frequency().

Idle Thread TCB Size: Determines the amount of memory allocated for the idle thread. Refer to

section vos_set_idle_thread_tcb_size() for more information.

Quantum: Refer to section vos_init().

Number of Devices: This is the number of additional devices (excluding devices selected at the

Drivers screen) that the developer wishes to add to the system. This values provides scope

for developers adding their own drivers to the system.

Copyright © 2012 Future Technology Devices International Ltd. 157

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.1.6 Threads

The Threads screen allows multiple threads to be added to the application. These are started
automatically from the main() function.

Prototypes and function place holders will be added to the application when a new application is
made. Function place holders will not be changed if an application is modified.

Copyright © 2012 Future Technology Devices International Ltd. 158

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The 'Parameter Declarations' box is used in the function prototype and function definition. Names of
variables as well as types, separated by commas are required.

The 'Parameters' box is how the parameters should be shown in the call to vos_create_thread_ex()
in the main() function.

3.5.3.1.7 Summary

The summary gives the developer a chance to review their new application before the project file
containing all relevant C files is created.

3.5.3.2 Project/File Handling

VinIDE project files have a “.vproj” extension. It supports C source files, assembler files, header files,
object files as well as other files. The project files uses relative addressing.

3.5.3.2.1 Creating a new project

1.Click on New Project

or

Copyright © 2012 Future Technology Devices International Ltd. 159

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The New Project window will appear.

2.Type the name of the project (the filename of the project file), the path where the project file will
be saved, and the solution name.

 The solution name will be the name of the output binary file when the project is built.

3.Select OK.

3.5.3.2.2 Adding files to your project

3.5.3.2.2.1 Adding new empty file

1.Click on New File

or

Copyright © 2012 Future Technology Devices International Ltd. 160

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Or by right-clicking the project node on the Project Manager panel.

The Add New File window will appear

Copyright © 2012 Future Technology Devices International Ltd. 161

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

2.Select the type of file you want to add and press OK.

3.5.3.2.2.2 Adding existing files

1.Click on Add File

or

or by right-clicking the project node on the Project Manager panel.

Copyright © 2012 Future Technology Devices International Ltd. 162

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The open file dialog will appear. The open dialog have 6 filters to choose from (C, Assembly, Header,
Object, Library, All file types). You can multi-select files by holding the CTRL key while clicking on the
files you wish to add.

2.Press Open button.

3.5.3.2.2.3 Adding Libraries and Headers

It is recommended to add FTDI libraries to a project using the Application Wizard. However, it can be
done manually using the FTDI Libraries section of the "Build" toolbar.

This will show a dialog box allowing you to add either Library (.a) files or Header (.h) files from the
FTDI Libraries.

Header files are not added as #include lines in source code.

Copyright © 2012 Future Technology Devices International Ltd. 163

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Any header or library files added in this way will be overwritten by the Application Wizard if a project
is modified.

3.5.3.2.3 Saving the project and files

3.5.3.2.3.1 Saving the project

To save the project in its current filename :

1. Click on Save Project

or

Copyright © 2012 Future Technology Devices International Ltd. 164

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

or by right-clicking the project node on the Project Manager panel

To save the project in another filename :

1. Click on Save As in the Project group

Or by right-clicking the project node on the Project Manager panel

Or by right-clicking the project node on the Project Manager panel

Copyright © 2012 Future Technology Devices International Ltd. 165

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.2.3.2 Saving individual files

To save a file, it should first be opened in the editor.

To save the file in its current filename,

1. Click on Save File

or

or by right-clicking the filename on the Project Manager panel

Copyright © 2012 Future Technology Devices International Ltd. 166

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

To save the file in another filename,

1. Click on Save As in the File group

or

or

Copyright © 2012 Future Technology Devices International Ltd. 167

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

or by right-clicking the filename on the Project Manager panel

3.5.3.2.3.3 Saving the project and the files

You can also save both the project and the files in the project with just one action

1. Click on Save All

Copyright © 2012 Future Technology Devices International Ltd. 168

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.2.4 Opening an existing project

1.Click on Open Project

or

The open project dialog will appear.

2.Select a project file (*.vproj) and press Open

The project as well as the files included in the project will be added into the Project Manager panel

Copyright © 2012 Future Technology Devices International Ltd. 169

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.2.5 Closing a file

1.Click on Close File

or

or by clicking the X button on the file’s tab in the editor

The file will be closed for editing but will remain as part of the project. To remove a file from the
project, please see under Removing a file from the project

3.5.3.2.6 Closing a project

1.Click on Close Project

or

The user will be asked to save all unsaved files if any. All open files will be closed as well

Copyright © 2012 Future Technology Devices International Ltd. 170

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.2.7 Removing a file from the project

1.Click on Remove File

or by right-clicking the filename on the Project Manager panel

The file will be closed if open and will be removed from the list of files

3.5.3.3 Building a project

Building a project involves compiling, assembling, and linking the source files into the output binary
and ROM files. The object files as well as the final executable and ROM file is saved in either a sub-
folder called "debug" or "release" in the folder where the project file is stored. These folders are
automatically created by the IDE when you create a project.

3.5.3.3.1 What you need to do before you can build your project?

Before you can build your project:

1.Make sure you have the latest executable files for the other modules of the toolchain, namely:

The Preprocessor (VinCpp.exe)

The Compiler (VinC.exe)

The Assembler (VinAsm.exe)

The Linker (VinL.exe)

2.Make sure the paths of the above executables is declared either by adding them to the path
environment variable or by explicitly declaring them in the IDE’s options module (see IDE options).

Copyright © 2012 Future Technology Devices International Ltd. 171

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The path environment variable will be automatically updated by the supplied installer for the VNC2
IDE.

3.5.3.3.2 Compiling a single source file

1.Right-click the file in the Project Manager panel.

2.If there are any compile errors, these errors appear below in the Messages panel.

Double click the compile errors to highlight the line number of the file where the error is generated.

3.5.3.3.3 Compiling the project

1.Click on Build

Or right-click the project node in the Project Manager panel

Copyright © 2012 Future Technology Devices International Ltd. 172

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

If there are any compile errors, these errors appear below in the Messages panel

2.If the build is successful, the output binary file as well as the object files are written on the project
file’s build folder

Copyright © 2012 Future Technology Devices International Ltd. 173

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.3.4 Cleaning the build files

You can clean the build folder to remove the generated files.

1.Click on Clean

or

Copyright © 2012 Future Technology Devices International Ltd. 174

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.4 Debugging a project

The IDE also includes debugging functions to allow the user to debug their projects easily using the
user interface.

3.5.3.4.1 What you need to be able to debug using the IDE?

Before you can start debugging:

1.Make sure you have the Debugger DLL (VinDbg.dll) file on your windows PATH environment
variable to be able to use the debugging functionalities.

2.Also make sure that the evaluation or debugger board is connected and turned on.

3.Make sure that the debug option for Compiler, Assembler and linker are set to 1 or set th Build
Configuration option to debug. (Click here to see Build Configuration Option)

The files required are installed by default by the installer program

3.5.3.4.2 Debugging Commands

Below are some of the debugging commands that you can do using the IDE :

Flash

 - Used to program the board without starting the debugger tool.

Verify

 - Check the contents of the ROM. (Requires ProgLoader V1.7 or later on the VNC2 device).

Start

 - Used to start/continue execution of the program.

Pause

 - Used to halt the execution of the program.

Stop

 - Used to stop execution of the program.

Step

Copyright © 2012 Future Technology Devices International Ltd. 175

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 - Used to do a line by line execution of the program (must halt execution first before doing a step).

Step Into

 - If the current execution line is a function call, Step Into will go inside that function and execute
the first line inside(must halt execution first before doing a step).

Step Over

 - If the current execution line is a function call, Step Over will execute all the lines inside the
function (must halt execution first before doing a step).

Step Out

 - Step Out will execute all the executable lines in the current function until the first line after (must
halt execution first before doing a step).

3.5.3.4.2.1 Programming the chip

The VNC2 chip can be programmed with the ROM file without starting the source-level debugging.

To program the ROM file for the current project simply click on the Flash button in the 'Debug' tab.

If a ROM file other than that for the current project is to be programmed into the VNC2 then use the
following process:

a) Under the Debug tab, click on the drop down menu below Flash

b) Select a ROM file then click the Open button

Copyright © 2012 Future Technology Devices International Ltd. 176

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

c) Click the OK button.

Note: Make sure to flash the chip with the ROM file (.rom) of the active project. If the flashed rom file is

different from the active project, the code cannot be debugged.

3.5.3.4.3 Adding/Removing Breakpoints

Breakpoints are used to interrupt and halt execution of the program for debugging purposes.

To add a breakpoint, click on the line number in the gutter part of the source editor corresponding to
the instruction you want the program to halt.

To remove the breakpoint, click on the line number again.

3.5.3.4.4 Adding Watch variable

The watch window lists the variables that are being evaluated during the debugging process. These
variables are updated after the program has paused execution. Right-click on the variable in the
source code window to add a watch variable.

Copyright © 2012 Future Technology Devices International Ltd. 177

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The Watch List window appear.

Alternatively, the Quick Watch window from the View tab can temporarily display variables without
adding them to the Watch List window.

The watch window will only evaluate the value of variables, it will not evaluate expressions.

3.5.3.5 Project Options

The Project Options module lets the user change the behavior of the various modules of the
toolchain and even the build process itself.

Copyright © 2012 Future Technology Devices International Ltd. 178

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.5.1 Bringing up the Project Options window

1.Go to the Project toolbar tab and click Project Options.

or

Right click the project node in the Project Manager panel.

The Project Options window will appear.

Changes made in the project options window are saved when you click OK, otherwise changes are
discarded.

3.5.3.5.2 The Directories Options

The Directories options allows the user to change some path-related options like the include and
library paths as well as where the final binary is saved. To view the Directories options In the Project
Options, click the Directories node in the left hand list.

Copyright © 2012 Future Technology Devices International Ltd. 179

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Final output directory

The directory path where the binary output of the build will be saved. If no path is specified, the
default location will be inside the Build folder of the current project

Include path

A list of directories where the other tools (i.e. Compiler, Assembler) will look into for included files in
the project

Library path

A list of directories where the other tools (i.e. Compiler, Assembler) will look into for library files that
are needed for the project

3.5.3.5.2.1 Changing where the final output is stored

The default path where the final output is stored is in the build folder alongside the project file. To
change the path where you want to save the binary output :

1.Go to the Project Options module

2.Click on the Directories node on the options tree view

3.Type the path where you want to save the output in the Final output directory textbox (absolute
or relative path)

4.Alternatively, you can click on the button with the “…” beside the textbox to bring up the folder
selection dialog box. Select the folder and click OK in the dialog box.

5.Click the OK button to save the changes in the options.

Copyright © 2012 Future Technology Devices International Ltd. 180

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.5.2.2 Adding directories in the Include path option

You can add multiple directories, separated by a semicolon, to the include path

1.Go to the Project Options module

2.Click on the Directories node on the options tree view

3.Type the paths, separated by a semicolon, in the Include path textbox (absolute or relative path)

4.Alternatively, you can click on the button with the “…” beside the textbox to bring up the multi-
folder selection dialog box.

5.Click the OK button to save the changes in the options.

3.5.3.5.2.3 Adding directories in the Library paths option

To add multiple directories to the Library path option, do the same as with the Include path option

3.5.3.5.3 The Compiler Options

The Compiler options allows the user to change some compiler-related options and arguments. To
view the Compiler options In the Project Options, click the VNC2 Compiler node in the left hand list.

Copyright © 2012 Future Technology Devices International Ltd. 181

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Compile to .asm then to .obj

On – The compiler is invoked with the –S switch. The compiler stops processing after
preprocessing and compilation. The assembler is invoked in another process.

Off – the compiler is invoked with the –c switch. Preprocess, compile and assemble in one
call

Keep intermediate files

Default – Use the compiler's default setting.

Off – Intermediate files are deleted after the compiler execution.

Assembly files – The compiler is invoked with the "--save-temp a" switch. The compiler
keeps the .asm files it generated before calling the assembler.

Preprocessor files – The compiler is invoked with the "--save-temp i" switch. The compiler
keeps the preprocessor files after the call to the preprocessor.

Both – The compiler is invoked with the "--save-temps" switch. Both assembler and
preprocessor files are kept.

Define additional macros

User macro definitions that are to be used for compilation are entered here

Debug information level

Default – Use the compiler's default debug information level setting.

0 – No debugging information is included in the compiler output.

1 – Debugging information is included in the compiler output.

Optimization level

Default – Use the compiler's default setting.

0 – No optimizations.

1 – Register Allocation optimization is invoked.

Copyright © 2012 Future Technology Devices International Ltd. 182

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

2 – Register Allocation + Partial IC optimization is invoked.

3 – Register Allocation + Full IC optimization is invoked.

4 – Full optimization (RA + Full IC + Peephole) is invoked.

Warning Limit

The limit of the warning messages to be issued by the compiler.

Error Limit

The limit of the error messages to be issued by the compiler.

Verbose mode

On – The compiler is in verbose mode.

Off – Quieten output of compiler.

Additional options to pass to the compiler

Any additional switches that have to be passed to the compiler are entered here.

3.5.3.5.4 The Assembler Options

The Assembler options allows the user to change some assembler-related options and arguments.
To view the Assembler options In the Project Options, click the VNC2 Assembler node in the left hand
list.

Debug information level

Default – Use the assembler's default debug information level setting.

0 – No debugging information is included in the assembler output.

1 – Debugging information is included in the assembler output.

Keep intermediate files

This is not yet implemented.

Verbose mode

Copyright © 2012 Future Technology Devices International Ltd. 183

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

On – The assembler is in verbose mode.

Off – Quieten output of assembler.

Additional options to pass to the assembler

Any additional switches that have to be passed to the assembler are entered here.

3.5.3.5.5 The Linker Options

The Linker options allows the user to change some linker-related options and arguments. To view
the linker options In the Project Options, click the VNC2 Linker node in the left hand list.

Use user-defined bootloader

On – The linker will not link the firmware bootloader and use a user-supplied bootloader
instead

Off – The firmware bootloader will be automatically used.

Debug information level

Default – Use the linker's default debug information level setting.

0 – No debugging information is included in the linker output.

1 – Debugging information is included in the linker output.

Enable Optimizations

Default – Use the linker's default setting.

On – Linker optimization is invoked.

Off – Linker optimization is not invoked.

Entry Symbol

Entry symbol name to be used by the linker.

Stack Size

The size in bytes of the stack to be used by the linker.

Copyright © 2012 Future Technology Devices International Ltd. 184

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Base Code Offset

The base code offset value to be used by the linker.

Verbose mode

On – The linker is in verbose mode.

Off – Quieten output of linker.

Additional options to pass to the linker

Any additional switches that have to be passed to the linker are entered here.

3.5.3.5.6 The Build Order

The Build Order options allows the user to specify the order on which the object files are linked. The
source files and included object files in the project are listed and the order can be changed through
the UP/DOWN arrow buttons.

It is recommended that the kernel.a file is placed first.

3.5.3.6 The IDE Options

The IDE options window allows the user to change the behavior and appearance of the IDE including
the built in text editor. The user can customize the editor’s display and colours.

Copyright © 2012 Future Technology Devices International Ltd. 185

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.6.1 Bringing up the IDE Options window

1.Go to the Tools toolbar tab and click Options

The IDE Options window should appear

Copyright © 2012 Future Technology Devices International Ltd. 186

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

NOTE : Some of the features in the IDE options are not yet implemented.

3.5.3.6.2 Environment Options

The Environment Options section lets the user configure some of the general aspects of the IDE like
the directories of the tools to be used, the backing up of the files before editing, and the filtering
behavior of the Message window.

Copyright © 2012 Future Technology Devices International Ltd. 187

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Create backup of source files

If checked, the IDE creates a backup file (.bak) of the file before being opened in the editor

File Change Detection

Sets the behavior of the IDE if a file is changed outside of the editor

No Action – Disregard the changes.

Prompt to reload – A message box informing the user that the file has changed and asks if
to reload the file with the changes.

Reload automatically – The file is automatically reloaded with the changes disregarding the
modifications in the editor

Filter Messages

If checked, the Messages windows only shows the messages concerning errors and
warnings. If unchecked, all messages from the tools are shown.

Compiler Directory

Specifies the directory where the compiler tool is found. If there is no path specified, the
IDE uses the path environment variable for the path.

Assembler Directory

Specifies the directory where the assembler tool is found. If there is no path specified, the
IDE uses the path environment variable for the path.

Linker Directory

Specifies the directory where the linker tool is found. If there is no path specified, the IDE
uses the path environment variable for the path.

Debugger Directory*

Specifies the directory where the debugger tool is found. If there is no path specified, the
IDE uses the path environment variable for the path. At present the debugger directory is
overridden by the path environment variable.

Copyright © 2012 Future Technology Devices International Ltd. 188

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

3.5.3.6.3 Editor Options

The Editor Options section allows for configuring the functional behavior of the source editor.

Auto Indent

If checked, auto indenting of next line is implemented

Auto Indent type

Sets the behavior of the auto indenting function

Trim trailing spaces

If checked, spaces at the end of lines are automatically removed.

Auto Expand

If checked, setting the cursor one or more characters after the last character of a line will
automatically expand the line with spaces till the cursor position.

Use syntax styler

If checked, the editor will format the text using a built in syntax styler.

Smart tabs

If checked, smart tabs are used, performing tabs based on columns in the previous line of the memo.

Enable word wrap

If checked, word-wrapping of text is activated.

DEL erase character

If checked, Delete key erases text instead of removing the character.

HOME key at first non-whitespace

If checked, pressing HOME key will bring the cursor to the first non-whitespace character in the
line. If not, the cursor will go to the first column

END key at last non-whitespace

Copyright © 2012 Future Technology Devices International Ltd. 189

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

If checked, pressing END key will bring the cursor to the last non-whitespace character in the line. If
not, the cursor will go to the last column including whitespaces

Cursor at no whitespace

If unchecked, clicking the cursor in an area in the line beyond the last non-whitespace will bring the
cursor after the last non-whitespace

Previous line after start of line

If checked, pressing the left arrow when the cursor is at column 0 will bring the cursor at the end of
the previous line, else the cursor stays at column 0

Next line after end of line

If checked, pressing the right arrow when the cursor is at the last non-whitespace character will
bring the cursor to the start of the next line.

Tab size

Sets the size of the tab in the memo.

Undo limit

Sets the maximum number of undo operations allowed.

3.5.3.6.4 Display Options

The Display Options sections covers the visual configuration of the source editor.

Show modified lines

If checked, a yellow colour is displayed on the gutter corresponding to the modified line
numbers of the active file

Gutter Width

Sets the width of the gutter on the left.

Show Gutter

If checked, the gutter is displayed on the left side of the source editor.

Copyright © 2012 Future Technology Devices International Ltd. 190

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Show Line Numbers

If checked, the line numbers of the active file is shown on the gutter.

Right Margin Width

Sets the width from the first column of the right margin line

Show Right Margin

If checked, a line is displayed on the right side of the editor signifying the right margin.

Font

Sets the font name to be used for the editor

Size

Sets the font size

3.5.3.6.5 Colour Options

The Colour Options sections covers the colour and other font settings for the various syntax
elements of the editor.

Element

Sets the element where the current settings will apply.

Foreground Colour

Sets the text colour of the selected element.

Background Colour

Sets the text background colour of the selected element.

Bold

Sets the element into bold font style.

Italic

Sets the element into italic font style.

Copyright © 2012 Future Technology Devices International Ltd. 191

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Underline

Sets the element into underline font style.

3.5.3.7 Plugins

3.5.3.7.1 Code Inspector

Introduction

Code Inspector displays an overall hierarchical representation of the current application code
structure. The treeview displays references to user functions/variables/data types as well as VOS
kernel functions and their appropriate variables/data types. Double clicking items within the
treeview will open the appropriate file containing the reference and highlight the relevant text within
the editor. Code Inspector runs as a realtime thread on user code therefore, after saving changes
to an application, the Code Inspector treeview will be updated appropriately.

Launching Application

The plug in comes as part of the VNC2 toolchain installation. The application appears as an icon
within the View menu of the IDE menu items. To launch the application click on the Code Inspector
icon. Figure 1 shows the main screen after launching the application. The treeview will be updated
automatically when a project is opened and a C file is opened within the editor.

Figure 1 - Code Inspector Overview

Toolbar

The Toolbar menu allows for customization of the Code Inspector treeview.

 Sort Alphabetically Sorts the list of functions and data types in A-Z alphabetical
order.

 Group by Type Groups the items within the treeview by type.

Copyright © 2012 Future Technology Devices International Ltd. 192

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 Show Function/Variable
Types

Shows the return type of functions and the type of variables.

 Go To Definition Jumps to the file containing the current item highlighted within
the treeview.

Treeview Symbols

The following key is used for items within the treeview:

 Structure

 Enum

 Enum Value

 Variable

 Function Prototype

 Function

 Label

3.5.3.7.2 Thread Manager

Introduction

Thread Manager displays a snap-shot of the state of the application currently running on a VNC2.
Each list item corresponds to a thread present on the current system providing feedback on thread
activity and the overall system activity. Thread Manager can be used as a debugging tool to
determine: blocked threads that have halted system activity, % of time spent running threads and
thread stack usage.

Launching Application

The plug in comes as part of the VNC2 toolchain installation. The application appears as an icon
within the View menu of the IDE menu items. To launch the application click on the Thread Manager
icon; Figure 1 shows the main screen after launching the application.

Figure 1 - Thread Manager Overview

System Profiling

Copyright © 2012 Future Technology Devices International Ltd. 193

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

System profiling starts as soon as the vos_start_scheduler function is called within an application.
Figure 2 shows the Philosophers sample running with the Thread Manager plug in open.

Figure 2 - Thread Manager Philosophers

Each of the threads in the system appears as an item in the list view; this list is inclusive of the Idle
Thread which is present in every application as part of the VOS kernel.

Thread information is sub-divided into the following categories:

Thread Name: Threads that are created using the vos_create_thread_ex function allow a pointer to
a NULL terminated C-style string to be passed to the kernel. The name passed will be displayed
within this column. The maximum number of characters for this string is 64 including the NULL
terminating character.

Priority: All applications are made up of Application Threads, System Threads and a single VOS Idle
Thread. Application threads are created by the user and have a priority of 1 to 31. System Threads
form part of driver internals and are not controlled by the user, they have a priority greater than 31.
The VOS Idle Thread has a priority of 0 and runs when every other thread in the system is unable to
run i.e. blocked or delayed; the idle thread is always ready to run.

State: The current state of a thread falls into the following sub-categories:

Blocked The thread has called a kernel function that blocks until completion.

Ready The thread is ready to run.

Running The currently running thread.

Delayed Calling vos_delay_msecs() on a thread will place it in the delay list.

Thread Type: Thread type can be one of the following: Application Thread, System Thread or VOS
Idle Thread.

CPU (%): The percentage of time that the CPU spends servicing each thread. The higher the value
in the VOS Idle Thread row the more time the CPU is spending blocked or delayed and as a result
the less time spent servicing application threads.

Peak Stack (Bytes): The peak amount of stack that each thread has used out of the memory
allocated. This value allows for tuning of thread stack size allocation; stack is allocated during a
vos_create_thread() or vos_create_thread_ex(), therefore the memory allocated can be tuned with
respect to the value within the Peak Stack column. The document Vinculum II Memory Management
provides further explanation of thread stack allocation.

Current Stack (Bytes): The amount of stack that is currently being used by the thread.

Status

The Thread Manager also reports a system status in the status bar of the window. This status is
used to indicate an unrecoverable VOS system error that has occurred.

The error codes are as follows:

http://www.ftdichip.com/Support/Documents/AppNotes/AN_157_Vinculum%20II%20Memory%20Management.pdf

Copyright © 2012 Future Technology Devices International Ltd. 194

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

0xFF - Ready
List Empty

There are no threads available to run.

0xFE - Malloc
Devices

Failed to malloc enough memory in RAM.

0xFD - Thread
Not Found

A thread that returned has not be found on the thread list.

Ready List Empty and Thread Not Found are both indicative of some kind of memory problem in the
system, e.g. an invalid pointer, that has resulted in overwriting of system memory. Malloc Devices
occurs when there has not been enough RAM left in the system to allocate for a device driver.

3.5.3.8 Keyboard Shortcuts

These are the keyboard shortcuts to perform various functions in VinIDE :

CTRL-SHIFT-N New Project

CTRL-N New File

CTRL-SHIFT-S Save All

CTRL-S Save File

CTRL-F Find

CTRL-C Copy

CTRL-V Paste

CTRL-X Cut

CTRL-Z Undo

CTRL-Y Redo

CTRL-SHIFT-O Open Project

CTRL-O Open File

CTRL-H Replace

F7 Build Project

CTRL-SHIFT-F11 Project Options

CTRL-TAB Next Tab

CTRL-SHIFT-TAB Previous Tab

CTRL-F4 Close Tab

F3 Search Again

F9 Breakpoint

F1 Help

CTRL-0 Select Project Manager

CRTL-1 Select Properties Panel

Copyright © 2012 Future Technology Devices International Ltd. 195

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

CTRL-2 Select Messages Panel

CTRL-3 Select Watch Panel

CTRL-4 Select Memory Panel

CTRL-5 Select Breakpoint List

F5 Start

F10 Step

F11 Step Into

SHIFT-F11 Step Out

SHIFT-F12 Run To Cursor

CTRL-F4 Show Disassembly

SHIFT-F6 Reset

F6 Stop

SHIFT-F5 Pause

F4 Flash

CRTL-ALT-L Open Libraries

CRTL-ALT-H Open Header Files

CRTL-P Print

3.6 VinPrg Programmer

The programmer tool allows a command line user, script or application to program code into the
Flash on a VNC2.

The ROM file can be programmed at a specific offset. However, all programs are linked at a fixed
address, so this must match the offset supplied to the linker (with the -B parameter). One other
feature is the entire contents of flash can be cleared prior to programming.

During programming an indication of the percentage complete is echoed to the command line. This
does get output at a fixed percentage interval, rather after a certain number of bytes and is
calculated relative to the size of the file which is being programmed. There are no backspaces or
carriage returns sent to overwrite the previous value displayed.

3.6.1 Programmer Command Line Options

The following command line options are supported in the VinPrg Programmer:

VinPrg [options] file

Option Description

-d "name" Select debugger hardware interface description

-o offset Offset to start of program in Flash ROM (in words)

-l length Optional maximum length of program (in words)

-w offset Display contents of word at offset in Flash ROM (for verification)

-m addr Show 64 bytes of RAM from address specified

-a List available debugger hardware interfaces

Copyright © 2012 Future Technology Devices International Ltd. 196

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

-c Clear contents of Flash ROM before programming

-r Reset device after programming

Examples

Show available devices for programming then program file "myprog.rom" into Flash ROM:

C:\>vinprg -a

Available debugger interfaces:

V2EVAL Board C (FTTPI0OOC) VNC2 64-pin package

C:\>vinprg -d "V2EVAL Board C" myprog.rom

Flashing 354 bytes

Erasing Flash...

Flash erase done.

Writing Flash...

100

Flash write done.

Program code into offset 0x1f000 (word offset):

C:\>vinprg -d "V2EVAL Board C" testcases\test.rom -o 0x1f000

3.7 VinUser Customiser

The VinUser Customiser allows access to the userDataArea referred to in the Special VNC2 Reference
of the linker. This is 8 words reserved in the ROM file which can be used by user applications without
restrictions.

The customiser will allow a text string or hexadecimal values to be written to this area. The entire
area must be written, partial accesses to bytes are not supported.

This area is particularly suited to storing serial numbers, version numbers or customisation
information.

3.7.1 Customiser Command Line Options

The following command line options are supported in the VinUser Customiser:

VinUser [options] file

Option Description

-s "data" Specify a string for user data area

-x value Specify a hexadecimal value to be programmed into the user data area

Examples

Set a string in the user data area of a ROM file:

C:\>vinuser -s "V1.0.0 Test 1" test.rom

Program a hexadecimal value into the user data area:

C:\>vinuser -x 4445464748494a4b4c4d4e4f61626364 test.rom

Copyright © 2012 Future Technology Devices International Ltd. 197

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4 Firmware

The VNC2 firmware model consists of three layers.

VOS Kernel. This is responsible for managing hardware resources, interrupts and scheduling.

FTDI Drivers. These control either a hardware resource or other device drivers. They provide a
programming interface to higher level code.

FTDI Libraries.

User Applications. This is where the functionality of the firmware is provided by controlling various
device drivers.

The user application calls an API to communicate with device drivers which access the hardware
resources. The kernel provides an API for device drivers and user applications to control the
operation of the VNC2.

Some device drivers require a thread to control a hardware resource - others are able to work using
only events (interrupts and API calls).

User applications are allowed to run multiple threads.

4.1 VOS Kernel

The VNC2 RTOS (VOS) is a pre-emptive priority-based multi-tasking operating system.

VOS has the following features:

Priority based tasks. Tasks are run by a Kernel Scheduler which decides which tasks will run
based on their priority. The scheduler also has the ability to provide priority boosts to low priority
tasks from being completely denied processor time. Tasks can also be deliberately delayed.

Task switching. When a task’s allotted processor time has elapsed, the task is paused and the
next task in the ready list allowed to run. In order for this to happen, VOS will save the context of
the running task and restore the context of the task to be run. The time which a task is allocated
depends on a value called the quantum.

Task synchronisation. Several mechanisms are provided:

o Mutexes are provided so tasks can achieve exclusive access to a resource.

o Semaphores are also available for inter-task communication.

o Condition Variables are provided to allow tasks to synchronise based on the value of data.

Copyright © 2012 Future Technology Devices International Ltd. 198

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

o Critical Sections are provided as a method of claiming additional CPU time beyond the normal
allotted time slice for a task to run, allowing important code paths to complete before allowing
a task switch.

Device Manager. The device manager provides the interface between user application code and
the device drivers. When a user application successfully opens a device, the device manager
allocates a handle to the device that the application can use for subsequent communication.
Opening a device obtains exclusive access to the device. User applications have access to a
standard set of device driver functions via the device manager:

o vos_dev_open() – obtain exclusive access and a handle to the device.

o vos_dev_close() – release the device handle and relinquish exclusive access.

o vos_dev_read() – read data from the device.

o vos_dev_write() – write data to the device.

o vos_dev_ioctl() – device specific operations.

o interrupt – hardware interrupt handler.

4.1.1 VOS Definitions

There are certain definitions for variable and function types which are used throughout the kernel
and drivers. They are available to applications in the vos.h header file.

Null pointer and logic definitions:

#define NULL 0

#define TRUE 1

#define FALSE 0

Variable type definitions:

#define uint8 unsigned char

#define int8 char

#define int16 short

#define uint16 unsigned short

#define uint32 unsigned int

#define pvoid unsigned char *

Function type definitions:

typedef uint8 (*PF)(uint8);

typedef void (*PF_OPEN)(void *);

typedef void (*PF_CLOSE)(void *);

typedef uint8 (*PF_IOCTL)(pvoid);

typedef uint8 (*PF_IO)(uint8 *, unsigned short, unsigned short *);

typedef void (*PF_INT)(void);

4.1.2 Kernel Configuration

The kernel maintains lists and data structures which must be initialised prior to use. The vos_init()
call is used to initialise the kernel data and also set the task switching quantum and tick count.

The tick count is the number of milliseconds the kernel will wait before evaluating the quantum of a
process. The quantum is the number of kernel ticks for which a process will run until it is either:

interrupted

blocked - the thread calls a kernel function that blocks until completion e.g. vos_lock_mutex() or
vos_wait_semaphore()

pre-empted - a higher priority task has become unblocked by an interrupt

delayed - a call to vos_delay_msecs() will make the process delay

When any of the above occur or at the expiry of the quantum the kernel will switch to the next
highest priority task which is not blocked or delayed. This is called task switching.

Copyright © 2012 Future Technology Devices International Ltd. 199

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The default tick count is one and default quantum is 50. These values give balanced performance for
general purpose programs that may want to perform some data processing as well as input and
output operations. Decreasing the quantum will increase the number of task switches which occur
and may allow multiple threads to collaborate better in sharing data or resources.

It is not recommended to alter the tick count from it's default value unless the application is to
continue processing at the detriment of responsiveness.

There is very little performance overhead in switching tasks so a quantum of 10 or below is possible
and can be beneficial in some systems. The quantum will have a larger effect on applications where
the multiple threads share the same priority level and where a thread performs significant amounts
of processing without blocking or delaying.

Where the time required to respond to an event is critical a tick count of 1, a quantum of 10
combined with a thread priority scheme where the more important threads have a higher priority will
provide a good solution.

4.1.2.1 vos_init()

Syntax

void vos_init(uint8 quantum, uint16 tick_cnt, uint8 num_devices);

Description

Initialise the kernel and kernel memory structures.

Parameters

quantum

The quantum parameter is used to set the time period in milliseconds between task
switches by the kernel.

tick_cnt

The tick_cnt value specifies the number of milliseconds (timer ticks) between context
switches by the scheduler.

num_devices

The device manager is initialised with the number of devices passed in the num_devices
parameter.

Returns

The function does not return any value.

Comments

The following definitions, providing default values, are available for use in vos_init() function calls:

VOS_TICK_INTERVAL

VOS_QUANTUM

The num_devices parameter reserves slots for drivers which are managed by the device manager.
Each and every slot must be configured using the vos_dev_init() function before the scheduler can
be started or any interrupts enabled.

4.1.2.2 vos_set_idle_thread_tcb_size()

Syntax

void vos_set_idle_thread_tcb_size(uint16 tcb_size);

Description

Adjust the RAM allocated for the idle thread

Parameters

tcb_size

Copyright © 2012 Future Technology Devices International Ltd. 200

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The amount of memory that is to be allocated for the idle thread stack in bytes.

Returns

The function does not return any value.

Comments

The idle thread is a special system thread present on all applications, this thread runs when every
other thread in the system is either blocked or delayed. As well as this, the idle thread also controls
peripheral interrupt handling.

By default the total stack allocation for the idle thread is 512 bytes, including 56 bytes for the TCB
and system data area. It is possible to use the Thread Manager to monitor the peak stack usage of
the idle thread. If it is seen that the idle thread does not require all of its allocated stack, some of
the memory can be reclaimed using the vos_set_idle_thread_tcb_size() function.

4.1.3 Thread Creation

A thread is created with the vos_create_thread() call. No threads will run until the Kernel Scheduler
is started.

Each thread has a block of memory set aside for it's stack and state information. This is allocated
dynamically by vos_create_thread().

Multiple threads can be run, the only limitation is the amount of memory available for them.

Each thread can be allocated a priority. Higher priority threads have a higher priority value assigned
when they are created. Values less than 32 may be used by an application, however, zero is
reserved for the idle task.

Optional parameters may be passed to a thread. The number of bytes for the arguments is specified
followed by the arguments themselves.

If multiple threads share the same priority level then they will be run sequentially in a round robin
fashion. To allow a thread to respond to an event more quickly increase it's priority relative to less
important threads.

As a general guideline avoid tight code loops where a thread is polling for an event. It is far better to
use a kernel synchronisation event to notify a thread. If the higher priority thread is polling without a
mutex, semaphore, condition variable or delay then it will prevent the lower priority thread from
running causing a deadlock situation. Where tight loops are unavoidable add in a short delay call to
vos_delay_msecs() to allow another thread a short time to perform calculations.

4.1.3.1 vos_create_thread()

Syntax

vos_tcb_t *vos_create_thread(uint8 priority, uint16 stack, fnVoidPtr function, int16 arg_size, ...);

Description

Create a thread to call a function and pass optional parameters.

Parameters

priority

The priority parameter specifies a kernel priority to run the thread at.

stack

The stack parameter is the size of the stack to allocate to the thread.

function

The function is a pointer to a function to run as the entry point of the thread.

arg_size

Specifies the size of the optional parameters to pass.

Returns

The function returns a pointer to a kernel task control block.

Copyright © 2012 Future Technology Devices International Ltd. 201

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Comments

The memory for thread stack space is reserved and initialised by vos_create_thread().

The function pointed to must have a return type of void. If the function pointed to has a return
value, this will corrupt the call and incorrect parameters will be passed to the function.

If optional parameters are not required for the thread then set arg_size to zero. Multiple parameters
may be passed with the total size of them set in arg_size.

Tasks are not actually started until vos_start_scheduler() is called.

The priority of the thread specified should be greater than zero and less than 32. A higher number
indicates a higher priority.

Example

#define SIZEOF_TASK_1_MEMORY 0xa00

#define SIZEOF_TASK_2_MEMORY 0x800

void task1();

void task2(int);

vos_tcb_t *tct1, *tcb2;

void main(void)

{

 int x = 4;

 vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, 0);

 tcb1 = vos_create_thread(30, SIZEOF_TASK_1_MEMORY , task1, 0);

 tcb2 = vos_create_thread(28, SIZEOF_TASK_2_MEMORY , task2, sizeof(int), x);

}

4.1.3.2 vos_create_thread_ex()

Syntax

vos_tcb_t *vos_create_thread_ex(uint8 priority, uint16 stack, fnVoidPtr function, char *name, int16 arg_size, pack ...);

Description

Create a named thread to call a function and pass optional parameters.

Parameters

priority

The priority parameter specifies a kernel priority to run the thread at.

stack

The stack parameter is the size of the stack to allocate to the thread.

function

The function is a pointer to a function to run as the entry point of the thread.

name

A pointer to a name string to attach to the thread.

arg_size

Specifies the size of the optional parameters to pass.

Returns

The function returns a pointer to a kernel task control block.

Comments

vos_create_thread_ex() performs the same functions as vos_create_thread() but with additional
feature of allowing a name string to be attached to the thread. This is particularly useful when using

Copyright © 2012 Future Technology Devices International Ltd. 202

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

the VinIDE thread manager plug in as it will extract and display the thread name alongside the stack
usage and CPU usage for the thread, so each uniquely named thread is easily identifiable.

Example

#define SIZEOF_TASK_1_MEMORY 0xa00

#define SIZEOF_TASK_2_MEMORY 0x800

void task1();

void task2(int);

vos_tcb_t *tct1, *tcb2;

void main(void)

{

 int x = 4;

 vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, 0);

 tcb1 = vos_create_thread_ex(30, SIZEOF_TASK_1_MEMORY , task1, "1st Thread\0", 0);

 tcb2 = vos_create_thread_ex(28, SIZEOF_TASK_2_MEMORY , task2, "2nd Thread\0", sizeof(int), x);

}

4.1.4 Kernel Scheduler

When scheduler starts control is passed from the main() function to kernel, threads are started.
Control never returns to main().

Delay timers, semaphores, mutexes and condition variables cannot be used before the scheduler is
started.

All devices declared in the num_devices parameter of the call to vos_init() must be initialised and
registered with the Device Manager before vos_start_scheduler() is called.

Delays may be added to any thread using the vos_delay_msecs(), and another thread may cancel a
delay in a thread using vos_delay_cancel(). Delays may be longer than requested due to a higher
priority thread running.

4.1.4.1 vos_start_scheduler()

Syntax

void vos_start_scheduler(void);

Description

Pass control to the kernel scheduler.

Parameters

There are no parameters required.

Returns

The function does not return any value.

Comments

Control is passed to the kernel scheduler. The function will never return to the calling routine. This is
normally found in the main() function of an application.

4.1.4.2 vos_delay_msecs()

Syntax

uint8 vos_delay_msecs(uint16 ms);

Copyright © 2012 Future Technology Devices International Ltd. 203

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Delay a thread for a minimum period of time.

Parameters

ms

The ms parameter specifies the minimum number of milliseconds which the current thread
will be delayed by. It may delay a longer time depending on the state of other threads.

Returns

The function returns zero for normal completion or non-zero if another thread has cancelled the
delay.

Comments

This may only be called from a thread after the kernel scheduler has started.

Example

void powerOnTest()

{

 uint16 delay;

 delay = 100;

 if (sendPowerOn() == 1)

 {

 // add an extra 500ms to delay

 delay += 500;

 }

 // wait until power good

 vos_delay_msecs(delay);

}

4.1.4.3 vos_delay_cancel()

Syntax

void vos_delay_cancel(vos_tcb_t *tcb);

Description

Cancel a delay in another thread.

Parameters

tcb

The tcb parameter specifies another thread which may be in a delayed state.

Returns

The function does not return any value.

Comments

This may only be called from a thread after the kernel scheduler has started.

4.1.5 Mutexes

Mutexes are used for synchronisation or to enforce mutual exclusion, and hence serialise access to
a shared resource. The resource is not actually specified for a particular mutex, it is up to the
programmer to ensure that the mutex is used for all instances of access to the resource.

Mutexes must be initialised before use but can be initialised as locked or unlocked using
vos_init_mutex().

Copyright © 2012 Future Technology Devices International Ltd. 204

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

A vos_lock_mutex() request will block until the mutex is unlocked. However, a vos_trylock_mutex()
will return and report if a mutex is locked. If the mutex is free then it will be locked.

The lock status of a mutex can be tested using the vos_trylock_mutex() feature followed by a
vos_unlock_mutex() call if the mutex was free.

The mutex is defined as:

typedef struct _vos_mutex_t {

 vos_tcb_t *threads; // list of threads blocked on mutex

 vos_tcb_t *owner; // thread that has locked mutex

 uint8 attr; // attribute byte

 uint8 ceiling; // priority for priority ceiling protocol

} vos_mutex_t;

Advanced mutex operations are available to raise or lower the priority ceiling allowing the priority of
the mutex to increase until it is processed.

Example

Consider an application with two threads which require to be synchronised. The first thread is used
to initialise some application specific data and then both threads can begin operation. A mutex is
used to signal thread th2 that the first thread th1 is complete.

vos_mutex_t mReady;

void main(void)

{

vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, 1);

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

// initialise mutex to be locked

vos_init_mutex(&mReady, 1);

vos_create_thread(30, MEMTHREAD1, th1, 2, &mReady);

vos_create_thread(30, MEMTHREAD2, th2, 2, &mReady);

vos_start_scheduler();

}

void th1(vos_mutex_t *m)

{

// perform initialisation

vos_unlock_mutex(m);

// continue thread tasks

}

void th2(vos_mutex_t *m)

{

// wait for th1 to complete initialisation

vos_lock_mutex(m);

vos_unlock_mutex(m);

// continue thread tasks

}

Example

Another example is where access to a variable is controlled or gated by a mutex.

vos_mutex_t mBusy;

char chBusy;

void main(void)

{

vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, 1);

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

// initialise mutex to be unlocked

vos_init_mutex(&mBusy, 0);

vos_create_thread(30, MEMTHREAD1, th1, 0);

vos_create_thread(30, MEMTHREAD2, th2, 0);

vos_start_scheduler();

}

void dp1()

{

while (1)

{

Copyright © 2012 Future Technology Devices International Ltd. 205

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// lock chBusy until we write it

vos_lock_mutex(&mBusy);

chBusy = 'a';

vos_unlock_mutex(&mBusy);

// continue thread tasks

}

}

void dp2()

{

while (1)

{

// don't read chBusy unless it's locked

vos_lock_mutex(&mBusy);

if (chBusy == 'a') chBusy = 'b';

vos_unlock_mutex(&mBusy);

// continue thread tasks

}

}

4.1.5.1 vos_init_mutex()

Syntax

void vos_init_mutex(vos_mutex_t *m,uint8 state);

Description

Initialises a mutex and sets it's initial value.

Parameters

m

The m parameter is a pointer to a mutex structure.

state

The value of state is the initial value of the mutex after initialisation.

Returns

The function does not return any value.

Comments

The initial value of the mutex must be one of the two options:

VOS_MUTEX_UNLOCKED

VOS_MUTEX_LOCKED

4.1.5.2 vos_lock_mutex()

Syntax

void vos_lock_mutex(vos_mutex_t *m);

Description

Performs a lock operation on a mutex to prevent any other process from locking it. If the mutex is
already locked then the function will block until the mutex is released by the other process.

Parameters

m

The m parameter is a pointer to a mutex structure.

Returns

The function does not return any value.

Copyright © 2012 Future Technology Devices International Ltd. 206

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Comments

To test if a mutex is already locked and therefore prevent a locking situation use the
vos_trylock_mutex() function.

4.1.5.3 vos_trylock_mutex()

Syntax

uint8 vos_trylock_mutex(vos_mutex_t *m);

Description

Tests the lock status of a mutex and performs a lock operation if it is unlocked. If it is already locked
then it will return immediately.

Parameters

m

The m parameter is a pointer to a mutex structure.

Returns

The function returns 0 if the mutex was available and is now locked. Otherwise, 1 will be returned
and the mutex will continue to be locked by another process.

Comments

The following definitions are available for testing the return value of vos_trylock_mutex().

#define VOS_MUTEX_UNLOCKED 0

#define VOS_MUTEX_LOCKED 1

4.1.5.4 vos_unlock_mutex()

Syntax

void vos_unlock_mutex(vos_mutex_t *m);

Description

Performs an unlock operation on a mutex allowing it to be locked by other processes.

Parameters

m

The m parameter is a pointer to a mutex structure.

Returns

The function does not return any value.

Comments

The next process with the highest priority which is waiting on the mutex with the vos_lock_mutex()
function will lock the mutex.

4.1.5.5 vos_get_priority_ceiling() Advanced

Syntax

uint8 vos_get_priority_ceiling(vos_mutex_t *m);

Description

Returns the priority ceiling of a mutex.

Copyright © 2012 Future Technology Devices International Ltd. 207

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

m

The m parameter is a pointer to a mutex structure.

Returns

The function returns the priority ceiling of the mutex.

Comments

The priority ceiling is the priority to which a mutex is allowed to rise to prevent deadlock situations.

4.1.5.6 vos_set_priority_ceiling() Advanced

Syntax

void vos_set_priority_ceiling(vos_mutex_t *m,uint8 priority);

Description

Sets the priority ceiling of a mutex.

Parameters

m

The m parameter is a pointer to a mutex structure.

priority

Specifies the maximum priority to which a thread blocked on a mutex can rise to.

Returns

The function does not return a value.

Comments

4.1.6 Semaphores

A semaphore is similar to a mutex but has a count value associated with it. This allows an application
to specify a number of concurrent access to a shared resource or to queue multiple events to be
processed.

Semaphores must be initialised before use with an initial count value using vos_init_semaphore().

An ideal use of a semaphore is when multiple resources are available and need to be tracked to
make sure that only the required number of these resources are in use at any one time.

A call to vos_wait_semaphore() will block until a semaphore is available. A call to
vos_wait_semaphore_ex() can be used for waiting on either one semaphore to be available from a
list or all semaphores in a list to become available.

A semaphore is defined as:

typedef struct _vos_semaphore_t {

 int16 val;

 vos_tcb_t *threads;

 int8 usage_count;

} vos_semaphore_t;

typedef struct _vos_semaphore_list_t {

 struct _vos_semaphore_list_t *next;

 int8 siz;

 uint8 flags; // bit 7 set for WAIT_ALL clear for WAIT_ANY

 vos_semaphore_t *list[1];

} vos_semaphore_list_t;

The Philosophers Sample application shows semaphores used to do multi-process synchronisation.

Copyright © 2012 Future Technology Devices International Ltd. 208

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

An example of a semaphore would be a buffer containing 16 bytes. A producer thread will add bytes
to the buffer and a consumer thread remove bytes. The producer must not write more than 16
bytes, but can write more bytes after the consumer takes them off the stack.

// resource semaphore

vos_semaphore_t semBuf;

// the resources to protect

char buffer[16];

char *pBuf;

// mutex to protect buffer pointer

vos_mutex_t mBuf;

void producer();

void consumer();

void main(void)

{

 vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, 1);

 vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

 // initialise semaphore to be sizeof buffer

 vos_init_semaphore(&semBuf, sizeof(buffer));

 vos_init_mutex(&mBuf, 0);

 pBuf = &buffer[0];

 vos_create_thread(30, MEMTHREAD1, producer, 0);

 // consumer thread has a lower priority than producer

 vos_create_thread(29, MEMTHREAD2, consumer, 0);

 vos_start_scheduler();

}

void producer()

{

 char queueCount;

 while (1)

 {

 vos_wait_semaphore(&semBuf);

 vos_lock_mutex(&mBuf);

 *pBuf = queueCount;

 pBuf++;

 vos_unlock_mutex(&mBuf);

 queueCount++;

 }

}

void consumer()

{

 char myCount;

 while (1)

 {

 vos_lock_mutex(&mBuf);

 pBuf--;

 myCount = *pBuf;

 vos_unlock_mutex(&mBuf);

 vos_signal_semaphore(&semBuf);

 }

}

4.1.6.1 vos_init_semaphore()

Syntax

void vos_init_semaphore(vos_semaphore_t *sem,int16 count);

Description

Initialises a semaphore and sets its initial value

Parameters

sem

Pointer to a semaphore structure. The initial value of the semaphore is set to count.

Copyright © 2012 Future Technology Devices International Ltd. 209

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

There is no return value.

Comments

Example

The following code fragment shows how to declare a semaphore and initialise it with an initial value
of 1.

vos_semaphore_t sem;

vos_init_semaphore(&sem,1);

4.1.6.2 vos_wait_semaphore()

Syntax

void vos_wait_semaphore(vos_semaphore_t *s);

Description

Perform a wait operation on a semaphore. The semaphore's count field is decremented and the
current thread is blocked if the value of count is less than zero.

Parameters

sem

Pointer to a semaphore structure.

Returns

There is no return value.

Comments

4.1.6.3 vos_wait_semaphore_ex()

Syntax

int8 vos_wait_semaphore_ex(vos_semaphore_list_t *l);

Description

Perform a wait operation on multiple semaphores. The semaphores are passed to this function on a
list, and the wait operation can be performed for all semaphores on the list or any semaphore on the
list.

Parameters

l

Pointer to a semaphore list structure.

Returns

For VOS_SEMAPHORE_FLAGS_WAIT_ANY, return index in the semaphore list of the semaphore that
was signalled.

For VOS_SEMAPHORE_FLAGS_WAIT_ALL, return 0.

Comments

Between repeated calls to vos_wait_semaphore_ex the pointers stored in the list array require to
be updated. All elements in this array are set to zero before the vos_wait_semaphore_ex function
returns. The next, siz and flags members are not modified and do not need to be updated.

Copyright © 2012 Future Technology Devices International Ltd. 210

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

The following code fragments show how to use vos_wait_semaphore_ex.

In the first example the current thread will block until either sem1 or sem2 is signalled.

#define NUMBER_OF_SEMAPHORES 2

vos_semaphore_list_t *sem_list; // pointer to semaphore list

vos_semaphore_t sem1;

vos_semaphore_t sem2;

int8 n;

vos_init_semaphore(&sem1,0); // initialise semaphores

vos_init_semaphore(&sem2,0);

sem_list = (vos_semaphore_list_t *) malloc(VOS_SEMAPHORE_LIST_SIZE(NUMBER_OF_SEMAPHORES);

sem_list->next = NULL; // initialise semaphore list

sem_list->siz = NUMBER_OF_SEMAPHORES; // 2 semaphores

sem_list->flags = VOS_SEMAPHORE_FLAGS_WAIT_ANY;

sem_list->list[0] = &sem1;

sem_list->list[1] = &sem2;

n = vos_wait_semaphore_ex(sem_list);

if (n == 0) {

 // sem1 has signalled

}

else if (n == 1) {

 // sem2 has signalled

}

free(sem_list);

In the second example the current thread will block until both sem1 and sem2 are signalled.

#define NUMBER_OF_SEMAPHORES 2

vos_semaphore_list_t *sem_list; // pointer to semaphore list

vos_semaphore_t sem1;

vos_semaphore_t sem2;

int8 n;

vos_init_semaphore(&sem1,0); // initialise semaphores

vos_init_semaphore(&sem2,0);

sem_list = (vos_semaphore_list_t *) malloc(VOS_SEMAPHORE_LIST_SIZE(NUMBER_OF_SEMAPHORES);

sem_list->next = NULL; // initialise semaphore list

sem_list->siz = NUMBER_OF_SEMAPHORES; // 2 semaphores

sem_list->flags = VOS_SEMAPHORE_FLAGS_WAIT_ALL;

sem_list->list[0] = &sem1;

sem_list->list[1] = &sem2;

n = vos_wait_semaphore_ex(sem_list);

if (n == 0) {

 // sem1 and sem2 have signalled

}

free(sem_list);

4.1.6.4 vos_signal_semaphore()

Syntax

void vos_signal_semaphore(vos_semaphore_t *s);

Description

Perform a signal operation on a semaphore. The count variable is incremented and if the value of count is less
than or equal to zero then the first thread on the semaphore’s blocked list is removed and placed on the ready
list.

Copyright © 2012 Future Technology Devices International Ltd. 211

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

sem

Pointer to a semaphore structure.

Returns

There is no return value.

Comments

 If, as a result of vos_signal_semaphore, a thread with a higher priority than the current thread
becomes ready to run, then a task switch will occur and the higher priority thread will become the
current thread.

4.1.6.5 vos_signal_semaphore_from_isr()

Syntax

void vos_signal_semaphore_from_isr(vos_semaphore_t *s);

Description

Perform a signal operation on a semaphore. The count variable is incremented and if the value of
count is less than or equal to zero then the first thread on the semaphore’s blocked list is removed
and placed on the ready list.

Parameters

sem

Pointer to a semaphore structure.

Returns

There is no return value.

Comments

vos_signal_semaphore_from_isr is used to signal a semaphore from an interrupt service routine. It
differs from vos_signal_semaphore in that no task switch can occur if, as a result of
vos_signal_semaphore_from_isr, a thread with a higher priority than the current thread becomes
ready to run. In this case, the task switch will occur after the interrupt service routine has been
completed.

4.1.7 Condition Variables

Condition variables are used to synchronise threads based on the value of data. They are used in
conjunction with a mutex that allows exclusive access to the data value.

Condition variables must be initialised before use using vos_init_cond_var().

Calling vos_wait_cond_var() will block until the condition variable becomes true. A mutex is passed in
this function which is used to provide exclusive access to the variable which is being tested. To
signal that a condition variable is true the vos_signal_cond_var() function is called.

Type definition for condition variable:

typedef struct _vos_cond_var_t {

 vos_tcb_t *threads;

 vos_mutex_t *lock;

 uint8 state;

} vos_cond_var_t;

Example

This is a pseudocode example that demonstrates how to use a condition variable. Typically, the
condition variable, mutex and data are initialised in a mainline routine. In this example, a thread
(not shown) produces a byte of data and calls add_byte() to store the data in a buffer. A second

Copyright © 2012 Future Technology Devices International Ltd. 212

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

thread (not shown) calls read10bytes() to read 10 bytes of data from the buffer. These code
fragments provide a template for thread synchronisation using a condition variable in conjunction
with a mutex.

vos_cond_var_t readXferCV;

vos_mutex_t readXferLock;

unsigned short bytesAvailable;

main()

{

//

// somewhere in mainline initialisation:

// initialise condition variable

// initialise mutex

// initialise data

//

vos_init_cond_var(&readXferCV);

vos_init_mutex(&readXferLock,0);

bytesAvailable = 0;

}

unsigned char add_byte(unsigned char b)

{

//

// store byte in a buffer

//

//

// lock mutex and increment bytesAvailable

//

vos_lock_mutex(&readXferLock);

++bytesAvailable;

if (bytesAvailable >= 10) {

//

// signal that 10 bytes are available

//

vos_signal_cond_var(&readXferCV);

}

//

// unlock mutex

//

vos_unlock_mutex(&readXferLock);

}

unsigned char read10bytes(char *xfer)

{

//

// lock mutex and check number of bytes available

//

vos_lock_mutex(&readXferLock);

if (bytesAvailable < 10) {

//

// wait on condition variable until 10 bytes are available

Copyright © 2012 Future Technology Devices International Ltd. 213

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

//

vos_wait_cond_var(&readXferCV,&readXferLock);

}

//

// reach here when 10 bytes are available

//

vos_unlock_mutex(readXferLock);

//

// copy data into transfer buffer and return

//

return OK;

}

4.1.7.1 vos_init_cond_var()

Syntax

void vos_init_cond_var(vos_cond_var_t *cv);

Description

Initialises a condition variable.

Parameters

cv

Pointer to a condition variable structure.

Returns

There is no return value.

Comments

Example

The following code fragment shows how to declare a condition variable and initialise it.

vos_cond_var_t cv;

vos_init_cond_var(&cv);

4.1.7.2 vos_wait_cond_var()

Syntax

void vos_wait_cond_var(vos_cond_var_t *cv,vos_mutex_t *m);

Description

Wait on the condition variable cv. The calling thread is blocked until another thread performs a
vos_signal_cond_var operation on cv.

Parameters

cv

Pointer to a condition variable structure.

m

Pointer to a mutex structure.

Returns

There is no return value.

Copyright © 2012 Future Technology Devices International Ltd. 214

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Comments

This function works in conjunction with vos_signal_cond_var to provide thread synchronisation based
on the value of data. Condition variables are always used in conjunction with a mutex that must be
locked when vos_wait_cond_var is called.

Example

See later.

4.1.7.3 vos_signal_cond_var()

Syntax

void vos_signal_cond_var(vos_cond_var_t *cv);

Description

Signal the condition variable cv.

Parameters

cv

Pointer to a condition variable structure.

Returns

There is no return value.

Comments

This function works in conjunction with vos_wait_cond_var to provide thread synchronisation based
on the value of data. Condition variables are always used in conjunction with a mutex. The mutex
must be locked before vos_signal_cond_var is called. After signalling the condition variable, a thread
that had previously called vos_wait_cond_var will be unblocked and made ready to run. The calling
function must unlock the mutex to allow the vos_wait_cond_var operation in the unblocked thread to
complete.

Example

See later.

4.1.8 Diagnostics

The kernel can return two types of diagnostic information for each thread in the system: CPU usage and stack
usage.

Information about CPU usage is returned from the system profiler. When the profiler is enabled, the count field
in the current thread’s system data area is incremented when a timer interrupt occurs. Thus the relative time
spent in each thread can be calculated by retrieving the count field for each thread on the thread_list.

Information about stack usage for a thread is returned from a kernel API. This information can be obtained for
a system during execution, and used to optimise the thread’s stack size.

The system data area is a block of reserved storage in the thread control block is used hold diagnostic
information. The system data area is defined as follows:

typedef struct _vos_system_data_area_t {

struct _vos_system_data_area *next;

Copyright © 2012 Future Technology Devices International Ltd. 215

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_tcb_t *tcb;

uint32 count;

} vos_system_data_area_t;

4.1.8.1 vos_stack_usage()

Syntax

unsigned short vos_stack_usage(vos_tcb_t *tcb);

Description

Return the amount of bytes used in the stack area of the given thread.

Parameters

tcb

Pointer to a thread control block structure.

Returns

Number of bytes used in thread's stack area.

Comments

Stack locations are initialised with the filler value 0x5f736f76. This is used by vos_stack_usage() to
calculate how much stack space an application is using.

Example

This example shows how to obtain the stack usage in a system.

// number of application threads plus idle thread

#define NUMBER_OF_THREADS (NUMBER_OF_APPLICATION_THREADS+1)

vos_tcb_t *tcbs[NUMBER_OF_THREADS];

uint16 stack_bytes_used[NUMBER_OF_THREADS];

uint8 i;

// create application threads and save pointers to tcbs

for (i=1; i<NUMBER_OF_THREADS; i++) {

tcbs[i] = vos_create_thread(…);

}

// get pointer to idle thread tcb and save it

tcbs[0] = vos_get_idle_thread_tcb();

// get stack usage for all threads

for (i=0; i<NUMBER_OF_THREADS; i++) {

stack_bytes_used[i] = vos_stack_usage(tcbs[i]);

}

4.1.8.2 vos_start_profiler()

Syntax

void vos_start_profiler(void);

Description

Copyright © 2012 Future Technology Devices International Ltd. 216

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

For all threads, set the count field in the system data area to zero and enable the profiler.

Parameters

There are no parameters required.

Returns

There is no return value.

Comments

This function is used to obtain diagnostic information about CPU usage. After a call to vos_start_profiler
(), the count field in the current thread’s system data area is incremented when a timer interrupt occurs.

4.1.8.3 vos_stop_profiler()

Syntax

void vos_stop_profiler(void);

Description

For all threads, set the count field in the system data area to zero and enable the profiler.

Parameters

There are no parameters required.

Returns

There is no return value.

Comments

After a call to vos_stop_profiler(), the profiler is disabled and the count field in the current thread’s system
data area is not incremented when a timer interrupt occurs.

4.1.8.4 vos_get_profile()

Syntax

unsigned long vos_get_profile(vos_tcb_t *tcb);

Description

Return the count field in the system data area of the given thread.

Parameters

tcb

Pointer to a thread control block structure.

Returns

The value of the count field in the given thread's system data area.

Comments

After a call to vos_start_profiler(), the count field in the given thread’s system data area is incremented
every time a timer interrupt occurs when it is the current (running) thread in the system.

Copyright © 2012 Future Technology Devices International Ltd. 217

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.1.8.5 vos_get_idle_thread_tcb()

Syntax

vos_tcb_t *vos_get_idle_thread_tcb(void);

Description

Return a pointer to the idle thread TCB.

Parameters

There are no parameters required.

Returns

A pointer to the kernel idle thread control block.

Comments

In order to measure how much CPU time is being utilized by application threads, it is necessary to be able to
determine the CPU idle time. The idle thread TCB can be used with the vos_get_profile() function to determine
what percentage of CPU time is spent in the idle thread and hence allow a calculation of the percentage of
CPU time spent in application threads.

4.1.8.6 CPU Usage Example

This example shows how to obtain the profiler count values for each thread in an application, and calculate the
relative amount of time each thread spent running.

// number of application threads plus idle thread

#define NUMBER_OF_THREADS (NUMBER_OF_APPLICATION_THREADS+1)

vos_tcb_t *tcbs[NUMBER_OF_THREADS];

uint32 running_time[NUMBER_OF_THREADS];

uint32 relative_time[NUMBER_OF_THREADS];

uint32 total_time;

uint8 i;

// create application threads and save pointers to tcbs

for (i=1; i<NUMBER_OF_THREADS; i++) {

tcbs[i] = vos_create_thread(…);

}

// get pointer to idle thread tcb and save it

tcbs[0] = vos_get_idle_thread_tcb();

// start profiling

vos_start_profiler();

// calculate relative running times spent in threads

for (i=0; i<NUMBER_OF_THREADS; i++) {

running_time[i] = vos_get_profile(tcbs[i]);

}

Copyright © 2012 Future Technology Devices International Ltd. 218

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

for (i=0, total_time=0; i<NUMBER_OF_THREADS; i++) {

total_time += running_time[i];

}

for (i=0; i<NUMBER_OF_THREADS; i++) {

relative_time[i] = (running_time[i] * 100) / total_time;

}

4.1.9 Critical Sections

It is possible to define critical sections for when code must act atomically. This is done with the
following definitions:

#define VOS_ENTER_CRITICAL_SECTION asm{SETI;};

#define VOS_EXIT_CRITICAL_SECTION asm{CLRI;}

Example

For example, the following code will make sure that the sequence is not interrupted:

// find end of linked list

VOS_ENTER_CRITICAL_SECTION

while (pX->next)

{

pX = pX->next;

}

VOS_EXIT_CRITICAL_SECTION

4.1.10 Device Manager

Devices are controlled by drivers and are managed by the device manager in the kernel. The device
manager is layered below the application and presents a standard interface to the devices in the
system.

Copyright © 2012 Future Technology Devices International Ltd. 219

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The device manager controls access to the drivers for each device. Typically, an application opens a
device by calling the device manager function vos_dev_open() and obtains a handle that is used to
represent the device in all subsequent device accesses. The application sends requests to its
devices through the device manager using the functions vos_dev_read(), vos_dev_write() and
vos_dev_ioctl(). The device manager uses the handle to route the requests to the appropriate
device.

Drivers are allocated a number by the application. The application specifies the number of drivers in
the call to vos_init(). This number must be unique for each instance of a driver, it must start at zero
and each driver must be numbered contiguously. All allocated drivers must be initialised using
vos_dev_init() before the scheduler is started or any interrupt is enabled with
vos_enable_interrupts().

The stages for using the device manager are:

Driver Initialisation

Registering memory for device storage

Registering each driver

Driver Operation

Opening Drivers

Sending Read/Write or IOCTL Operations to the Drivers

Closing Drivers

Copyright © 2012 Future Technology Devices International Ltd. 220

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.1.10.1 Driver Initialisation

The device manager must be told how many devices are present in the system with the vos_init()
call before any devices are initialised by vos_dev_init().

Once when drivers are initialised is it possible to access a driver. Driver initialisation will normally be
handled by the driver rather than an application. Each driver should supply an initialisation function
for this purpose.

All devices must be initialised with the vos_dev_init() function before the scheduler is started with
vos_start_scheduler(). In the following structure function pointers for driver entry points must be
filled out by the driver before registering with vos_dev_init().

typedef struct _vos_driver_t {

PF_OPEN open; // dev_open()

PF_CLOSE close; // dev_close()

PF_IO read; // dev_read()

PF_IO write; // dev_write()

PF_IOCTL ioctl; // dev_ioctl()

PF_INT interrupt; // interrupt routine

uint8 flags; // miscellaneous flags

} vos_driver_t;

The open, close and interrupt function pointers are optional and if no open or close function is
required should be set to NULL. The read, write and ioctl function pointers are only required if that
function is to be available for calling. These should be set to NULL if the function is not supported.

The flags member is reserved for future use.

FTDI supplied drivers supply interrupt handlers when required and will manage all interrupt enabling
and disabling. It is not necessary to use interrupts for layered and non-hardware device drivers.

4.1.10.1.1 vos_dev_init()

Syntax

void vos_dev_init(uint8 dev_num, vos_driver_t *driver_cb, void *context);

Description

Initialise a device driver and add an optional context pointer.

Parameters

dev_num

This parameter specifies the index of the device in the driver control block.

driver_cb

A completed driver control block must be passed in the driver_cb parameter. This is used by
the device manager for calling driver entry points and must be persistent storage (i.e. not a
local variable in a function).

context

An optional value may be specified in the context parameter to allow a driver to
differentiate different instances or be configured with external data. The parameter is a
void pointer allowing any driver specific data to be passed.

Returns

The function does not return any value.

Comments

All drivers must be initialised with this call before the scheduler starts.

Example

#define NUMBER_OF_DEVICES 2

#define VOS_DEV_TEST1 0

#define VOS_DEV_TEST2 1

Copyright © 2012 Future Technology Devices International Ltd. 221

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_driver_t cb_test;

test_context tctx1;

test_context tctx2;

void test_init()

{

cb_test.open = test_open;

cb_test.close = test_close;

cb_test.read = test_read;

cb_test.write = test_write;

cb_test.ioctl = test_ioctl;

cb_test.interrupt = NULL;

// the same driver control block can be used for multiple drivers

vos_dev_init(VOS_DEV_TEST1, &cb_test, &tctx1);

vos_dev_init(VOS_DEV_TEST2, &cb_test, &tctx2);

}

void main(void)

{

 vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

test_init();

start_scheduler();

}

4.1.10.1.2 vos_enable_interrupts() vos_disable_interrupts()

Syntax

void vos_enable_interrupts(uint32 mask);

void vos_disable_interrupts(uint32 mask);

Description

Enable or disable hardware interrupts.

Parameters

mask

The interrupts to enable or disable are specified by the mask parameter.

Returns

The functions return no values.

Comments

Interrupts should only be enabled after all devices have been initialised with vos_dev_init(). An
interrupt handler must be present for each hardware interrupt enabled. The mask parameter may
have one of the following values. Values may be combined by bitwise or operation.

VOS_UART_INT_IEN

VOS_USB_0_DEV_INT_IEN

VOS_USB_1_DEV_INT_IEN

VOS_USB_0_HC_INT_IEN

VOS_USB_1_HC_INT_IEN

VOS_GPIO_INT_IEN

VOS_SPI_MASTER_INT_IEN

VOS_SPI_0_SLAVE_INT_IEN

VOS_SPI_1_SLAVE_INT_IEN

VOS_PWM_TOP_INT_IEN

VOS_FIFO_245_INT_IEN

Interrupts are not required for drivers which do not directly control hardware interfaces. Therefore,

Copyright © 2012 Future Technology Devices International Ltd. 222

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

interrupt enabling and disabling is not required for drivers which are layered on top of hardware
drivers. FTDI supplied hardware device drivers control and handle all aspects of interrupts. These
functions are documented only to allow advanced use of the FTDI supplied drivers where it may be
beneficial to suspend interrupt handling for a driver for a short period of time.

4.1.10.2 Driver Operation

When a driver is opened a handle is obtained:

Drivers are opened for exclusive access

The handle is valid until the driver is closed

Once it is closed it may be reopened

Read, Write and IOCTL calls will return a driver specific status value:

This is usually zero for success and non-zero for other outcomes

Hardware interrupt handling is taken care of in the FTDI supplied drivers therefore there are no
interrupt handlers require to be written. Interrupts cannot be triggered on layered drivers or drivers
which do not directly control hardware.

Example

First initialise the driver. This must be done in the main() function before the scheduler starts.

Open the driver to obtain a handle. This must be done after the scheduler starts if the driver
generates interrupts.

Setup the driver as required. This is normally accomplished with IOCTL calls.

Send read and write commands to the driver.

Close the driver when it is no longer required.

void thread3(void){

 /* handle to UART driver */

 VOS_HANDLE hUart;

 /* UART IOCTL request block */

 uart_ioctl_cb uart_iocb;

 /* string to display (include space for terminating NULL */

 char hello[] = {'H','e','l','l','o','\r'};

 unsigned short len;

 /* find and open UART device */

 hUart = vos_dev_open(VOS_DEV_UART);

 /* set baud rate to 9600 baud */

 uart_iocb.ioctl_code = VOS_IOCTL_UART_SET_BAUD_RATE;

 uart_iocb.buf_in.baud_rate = UART_BAUD_9600;

 vos_dev_ioctl(hUart,&uart_iocb);

 vos_dev_write(hUart, (unsigned)hello, 6, &len);

 vos_dev_close(hUart);

}

Do not call any device manager operations until all devices have been initialised with vos_dev_init().
Doing so may result in undefined behaviour.

Avoid using the device manager operations until the scheduler is started running with
vos_start_scheduler().

4.1.10.2.1 vos_dev_open()

Syntax

VOS_HANDLE vos_dev_open(uint8 dev_number);

Description

Open a device for subsequent access.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 223

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

dev_number

The device number allocated to the driver in the vos_dev_init() function call.

Returns

VOS_HANDLE a handle to the device which must be used for accessing the device.

Comments

When the device has been opened successfully, the caller has exclusive access to the device.

Example

This function returns a handle that must be used in subsequent device accesses.

The following code fragment shows how to open a device.

#define VOS_DEV_UART 4

VOS_HANDLE hUart;

hUart = vos_dev_open(VOS_DEV_UART);

4.1.10.2.2 vos_dev_close()

Syntax

void vos_dev_close(VOS_HANDLE h);

Description

Close a device.

Parameters

h

A VOS_HANDLE obtained previously from a call to vos_dev_open.

Returns

There is no return value.

Comments

Example

The following code fragment shows how to close a device.

#define VOS_DEV_UART 4

VOS_HANDLE hUart;

hUart = vos_dev_open(VOS_DEV_UART);

...

vos_dev_close(hUart);

4.1.10.2.3 vos_dev_read()

Syntax

uint8 vos_dev_read(VOS_HANDLE h,uint8 *buf,uint16 num_to_read,uint16 *num_read);

Description

Read data from a device.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 224

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

h

A VOS_HANDLE obtained previously from a call to vos_dev_open.

buf

Contains a pointer to storage for the data to be read.

num_to_read

Contains the maximum number of bytes to be read.

num_read

A pointer to a location to store the actual number of bytes read.

Returns

0 on success, otherwise a driver specific error code.

Comments

The device manager routes this request to the read function of the device that is represented by the
handle.

4.1.10.2.4 vos_dev_write()

Syntax

uint8 vos_dev_write(VOS_HANDLE h,uint8 *buf,uint16 num_to_write,uint16 *num_written);

Description

Writes data to a device.

Parameters

h

A VOS_HANDLE obtained previously from a call to vos_dev_open.

buf

Contains a pointer to the data to be written.

num_to_write

Contains the number of bytes to be written.

num_written

A pointer to a location to store the actual number of bytes written.

Returns

0 on success, otherwise a driver specific error code.

Comments

The device manager routes this request to the write function of the device that is represented by
the handle.

4.1.10.2.5 vos_dev_ioctl()

Syntax

uint8 vos_dev_ioctl(VOS_HANDLE h,void *cb);

Description

Send a control request to a device.

Parameters

h

A VOS_HANDLE obtained previously from a call to vos_dev_open.

cb

Copyright © 2012 Future Technology Devices International Ltd. 225

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Contains a pointer to the control block for the request.

Returns

0 on success, otherwise a driver specific error code.

Comments

The device manager routes this request to the ioctl function of the device that is represented by the
handle. The format of the control block is device-specific.

4.1.11 Hardware Information and Control

The kernel provides several functions for obtaining information about the CPU and controlling the
behaviour of the CPU.

Default is 48MHz but can be changed by application if required

Allowable values of 48MHz, 24MHz or 12MHz

4.1.11.1 vos_set_clock_frequency() and vos_get_clock_frequency()

Syntax

void vos_set_clock_frequency(uint8 frequency);

uint8 vos_get_clock_frequency(void);

Description

Initialise the CPU clock frequency

Parameters

frequency

The new clock frequency for the CPU is specified by the frequency parameter in
vos_set_clock_frequency().

Returns

The vos_get_clock_frequency() function returns the current clock frequency of the CPU.

Comments

The only valid values for the frequency are:

VOS_48MHZ_CLOCK_FREQUENCY

VOS_24MHZ_CLOCK_FREQUENCY

VOS_12MHZ_CLOCK_FREQUENCY

Note: If the specified clock frequency is invalid in vos_set_clock_frequency() then it will default to
48MHz.

4.1.11.2 vos_get_package_type()

Syntax

uint8 vos_get_package_type(void);

Description

Determine the package type of the device.

Parameters

There are no parameters.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 226

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The vos_get_package_type() function returns the package type of the device.

Comments

The values returned by the function are:

VINCULUM_II_32_PIN

VINCULUM_II_48_PIN

VINCULUM_II_64_PIN

4.1.11.3 vos_get_chip_revision()

Syntax

uint8 vos_get_chip_revision(void);

Description

Find the revision information for the device.

Parameters

There are no parameters.

Returns

The vos_get_chip_revision() function returns a single byte which includes the chip revision in the
high nibble and chip ID in the low nibble.

Comments

Currently the only valid value returned by this function is 0x11.

4.1.11.4 vos_power_down()

Syntax

uint8 vos_power_down(uint8 wakeMask);

Description

Power down the CPU into a low power sleep mode. Wait until an event occurs.

Parameters

wakeMask

Bit mask specifying event or events which will wake the CPU.

Returns

0 on success, otherwise 1 for an invalid mask value.

Comments

The valid values of the wakeMask are:

VOS_WAKE_ON_USB_0

VOS_WAKE_ON_USB_1

VOS_WAKE_ON_UART_RI

VOS_WAKE_ON_SPI_SLAVE_0

VOS_WAKE_ON_SPI_SLAVE_1

4.1.11.5 vos_halt_cpu()

Syntax

void vos_halt_cpu(void);

Copyright © 2012 Future Technology Devices International Ltd. 227

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Halts the CPU. The CPU will cease to process instructions if this function is called.

Parameters

There are no parameters.

Returns

The function does not return any value.

Comments

This function can be useful for debugging. Resetting the VNC2 will run the program from the start
again until reaching the vos_halt_cpu() function.

4.1.11.6 vos_reset_vnc2()

Syntax

void vos_reset_vnc2(void);

Description

Resets all hardware in the VNC2 IC. Registers are set to default values, the CPU is reset and RAM
will be re-initialized.

Parameters

There are no parameters.

Returns

The function does not return any value.

Comments

This function is equivalent to power cycling the VNC2 or toggling the RESET# line. It can be useful
for recovering from a system crash or provides an opportunity to re-configure the VNC2 based on
some external input (e.g. the state of GPIO lines).

4.1.12 Watchdog Timer

The kernel provides two functions to allow access to the VNC2 watchdog timer.

The watchdog timer is a special timer that has the ability to reset the CPU in the event that an error
has locked up the application. An application can enable the watchdog timer with a call to
vos_wdt_enable().

Once enabled, it is the responsibility of the application to call vos_wdt_clear() at regular intervals to
prevent the CPU from being reset unintentionally.

4.1.12.1 vos_wdt_enable()

Syntax

uint8 vos_wdt_enable(uint8 bitPosition);

Description

Enables the watchdog timer with the specified value.

Parameters

bitPosition

Value specifying the watchdog timer bit to initialise.

Copyright © 2012 Future Technology Devices International Ltd. 228

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

The function returns one of the following values:

VOS_WDT_STARTED

The watchdog was successfully started.

VOS_WDT_ALREADY_RUNNING

The watchdog has been started already with a prior call to vos_wdt_enable().

VOS_WDT_PENDING

The scheduler is not yet running; the watchdog timer will be enabled with the specified
value when the scheduler is started with a call to vos_start_scheduler().

VOS_WDT_UNSUPPORTED

The program loader requires upgrading to at least version 1.7 to use the watchdog timer.

Comments

The watchdog timer uses a 32-bit counter to determine the time before the watchdog expires. The
watchdog timer only allows a single bit of this counter to be initialised to determine the timer period.
Therefore, valid values for bitPosition are from 0 to 31. If a value outside this range is provided, a
value of 31 will be set.

The watchdog timer is clocked from the main system clock. At a system clock frequency of 48MHz, a
bitPosition value of 31 will give a watchdog period of nearly 45 seconds. If the system clock
frequency is reduced to 12MHz, the watchdog period is increased by a factor of 4 for a given
bitPosition value.

An application can call vos_wdt_enable() only once. Subsequent attempts to call vos_wdt_enable()
will not have any effect.

Calling vos_wdt_enable() before the scheduler is running will result in the watchdog being enabled
with the specified value when the scheduler is started; the watchdog timer will not expire unless the
scheduler is running.

4.1.12.2 vos_wdt_clear()

Syntax

void vos_wdt_clear(void);

Description

Clears the watchdog timer value.

Parameters

There are no parameters.

Returns

The function does not return any value.

Comments

If the watchdog timer has been enabled with a call to vos_wdt_enable(), then this function must be
called periodically by the application to prevent the watchdog timer from resetting the CPU. If the
watchdog timer expires, then the CPU will be re-initialised.

4.1.13 Kernel Services

In addition to the core kernel functions, there are kernel services that provide specialised
functionality. Kernel services can be used in drivers and applications. The available kernel services
are:

DMA service

Copyright © 2012 Future Technology Devices International Ltd. 229

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

This provides an interface for accessing and controlling the on-chip DMA engines. This is used
extensively by the VOS device drivers, but the memory-memory mode could be used in user
applications.

IOMux service

The IOMux service provides a simple mechanism for an application to route a specified signal to a
particular pin. The IOMux service also provides functions to configure IO cell characteristics.

4.1.13.1 DMA Service

The DMA service provides access to VNC2 direct memory access (DMA) engines. There are 4 on-chip
DMAs which this kernel service manages. DMA engines are used extensively by device drivers and
are not likely to be used in user applications in modes other than memory-memory.

typedef struct _vos_dma_config_t {

union {

uint16 io_addr;

uint8 *mem_addr;

} src;

union {

uint16 io_addr;

uint8 *mem_addr;

} dest;

uint16 bufsiz;

uint8 mode;

uint8 fifosize;

uint8 flow_control;

uint8 afull_trigger;

} vos_dma_config_t;

4.1.13.1.1 DMA Service Return Codes

Calls to the DMA kernel service may return one of the following status codes:

DMA_OK

The DMA request completed successfully.

DMA_INVALID_PARAMETER

An invalid parameter has been passed to the DMA function.

DMA_ACQUIRE_ERROR

Failed to acquire a DMA engine.

DMA_ENABLE_ERROR

Failed to enable the DMA engine.

DMA_CONFIGURE_ERROR

Failed to configure the DMA engine.

DMA_ERROR

Reserved.

DMA_FIFO_ERROR

Failed to retrieve data from the DMA FIFO buffer.

4.1.13.1.2 vos_dma_acquire()

Syntax

vos_dma_handle_t vos_dma_acquire(void);

Description

Acquire a DMA engine for subsequent use.

Parameters

None.

Copyright © 2012 Future Technology Devices International Ltd. 230

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

A handle to the DMA engine that has been acquired.

Comments

Since there are 4 DMA engines on-chip, they need to be shared between the various drivers and the
user application. Where possible, it is recommended that an acquired DMA engine be released by
calling vos_dma_release() when the operation is complete. vos_dma_acquire() will block until a DMA
engine becomes available to acquire.

4.1.13.1.3 vos_dma_release()

Syntax

void vos_dma_release(vos_dma_handle_t h);

Description

Release a DMA engine which was previously acquired with a call to vos_dma_acquire().

Parameters

h

A handle to a DMA engine.

Returns

No return code is provided.

Comments

Once a DMA engine has been released, it will be available for acquisition by another module by
calling vos_dma_acquire().

4.1.13.1.4 vos_dma_configure()

Syntax

uint8 vos_dma_configure(vos_dma_handle_t h,vos_dma_config_t *cb);

Description

Configure a DMA engine which was previously acquired with a call to vos_dma_acquire().

Parameters

h

A handle to a DMA engine.

*cb

A pointer to a DMA configuration structure. This specifies the operation that the DMA is
intended to perform.

Returns

The return code is one of the DMA status codes.

Comments

A DMA engine must be configured before it can be used for an operation. Once an operation is
complete, the DMA engine can be re-configured for another operation by a subsequent call to this
function.

4.1.13.1.5 vos_dma_retained_configure()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 231

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

uint8 vos_dma_retained_configure(vos_dma_handle_t h, uint8 *mem_addr, uint16 bufsiz);

Description

Perform minimal reconfiguration of a DMA engine which was previously acquired with a call to
vos_dma_acquire() and then fully configured with a call to vos_dma_configure().

Parameters

h

A handle to a DMA engine.

*mem_addr

A pointer to a RAM data buffer.

bufsiz

The size of the RAM data buffer above.

Returns

The return code is one of the DMA status codes.

Comments

Once a DMA operation is complete, the DMA engine may be released with a call to vos_dma_release
() or in some cases an additional DMA operation may be desired.

Provided that the DMA is to be used in the same mode as it has previously been configured for with
a call to vos_dma_configure(), the DMA can be quickly re-configured with a new memory address and
transfer size using the vos_dma_retained_configure() function. This function is much faster than
performing a full configuration of the DMA using vos_dma_configure() and can provide performance
benefits.

However, the 4 DMA engines in VNC2 are a shared resource and the decision to not release a DMA
may have an impact on overall system performance.

4.1.13.1.6 vos_dma_enable()

Syntax

uint8 vos_dma_enable(vos_dma_handle_t h);

Description

Start a DMA operation which was specified with a call to vos_dma_configure().

Parameters

h

A handle to a DMA engine.

Returns

The return code is one of the DMA status codes.

Comments

Once a DMA operation has completed, an interrupt is signalled to the CPU. An application can be
notified of completion by calling vos_dma_wait_on_complete() which will block until the specified DMA
engine has completed its processing.

4.1.13.1.7 vos_dma_disable()

Syntax

uint8 vos_dma_enable(vos_dma_handle_t h);

Description

Copyright © 2012 Future Technology Devices International Ltd. 232

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Stop a running DMA operation which was started with vos_dma_enable().

Parameters

h

A handle to a DMA engine.

Returns

The return code is one of the DMA status codes.

Comments

Terminating a running DMA operation by calling vos_dma_disable() does not free the DMA for
subsequent acquisition. To free the DMA engine, call vos_dma_release().

4.1.13.1.8 vos_dma_wait_on_complete()

Syntax

void vos_dma_wait_on_complete(vos_dma_handle_t h);

Description

Block thread execution until the specified DMA engine has completed its current operation.

Parameters

h

A handle to a DMA engine.

Returns

No return code is provided.

Comments

An application is notified of a DMA operation completing by calling this function. When the function
returns, the DMA can either be released by calling vos_dma_release() or re-configured for a
subsequent operation by calling vos_dma_configure().

4.1.13.1.9 vos_dma_get_fifo_data_register()

Syntax

uint16 vos_dma_get_fifo_data_register(vos_dma_handle_t h);

Description

Obtain an identifier for the FIFO data register of a DMA engine in FIFO mode.

Parameters

h

A handle to a DMA engine in FIFO mode.

Returns

The return value is the identifier of the FIFO data register for the DMA engine with handle h.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

The FIFO data register identifier is used with vos_dma_configure() as an element of the cb structure.

Copyright © 2012 Future Technology Devices International Ltd. 233

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.1.13.1.10 vos_dma_get_fifo_flow_control()

Syntax

uint8 vos_dma_get_fifo_flow_control(vos_dma_handle_t h);

Description

Obtain a flow control value for a DMA engine in FIFO mode.

Parameters

h

A handle to a DMA engine in FIFO mode.

Returns

The return value is the flow control value for the DMA engine with handle h.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

The FIFO flow control value is used with vos_dma_configure() as an element of the cb structure.

4.1.13.1.11 vos_dma_get_fifo_count()

Syntax

uint16 vos_dma_get_fifo_count(vos_dma_handle_t h);

Description

Determine the number of bytes in the DMA engine's FIFO.

Parameters

h

A handle to a DMA engine in FIFO mode.

Returns

The return value is the number of bytes currently in the FIFO for the DMA engine with handle h.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

vos_dma_get_fifo_count() can be called to determine the number of bytes in the DMA engine's FIFO
before calling vos_dma_get_fifo_data().

4.1.13.1.12 vos_dma_get_fifo_data()

Syntax

uint8 vos_dma_get_fifo_data(vos_dma_handle_t h,uint8 *dat);

Description

Determine the number of bytes in the DMA engine's FIFO.

Parameters

h

A handle to a DMA engine in FIFO mode.

Copyright © 2012 Future Technology Devices International Ltd. 234

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

*dat

A pointer to a variable to receive the data byte from the DMA engine's FIFO.

Returns

The return code is one of the DMA status codes.

Comments

The DMA engine FIFO mode of operation is only intended for use within VNC2 hardware device
drivers and under normal circumstances would not ever be required in a user application.

vos_dma_get_fifo_count() can be called to determine the number of bytes in the DMA engine's FIFO
before calling vos_dma_get_fifo_data().

4.1.13.2 IOMux Service

VNC2 features several peripherals. Due to the packages that the IC is provided in, it is not possible
to simultaneously route all of the signals for all of the on-chip peripherals to pins for connecting to
external electronics.

To allow any of the peripherals to be used in conjunction with external devices, VNC2 uses an IO
multiplexer (IOMux) to allow the user to route signals from the IC to the package pins for their
specific application. A default configuration is specified for each package, but a simple API is supplied
to allow the user to route signals as desired.

Note that there are restrictions on which pins a signal can be routed to.

In addition to signal routing, the IOMux allows an application to control the characteristics of each IO
cell.

To prevent unintended reprogramming of the debug pin (pin 11) on VNC2, the pin is mapped to pin
0xC7 (199 decimal) in the IOMux Service. An attempt to route a signal to any other pin above the
pin count for the current package will result in an error code being returned
(IOMUX_INVALID_PIN_SELECTION).

4.1.13.2.1 IOMux Service Return Codes

All calls to the IOMux kernel service will return one of the following status codes:

IOMUX_OK

The signal routing request completed successfully.

IOMUX_INVALID_SIGNAL

The requested signal is outwith the available range.

IOMUX_INVALID_PIN_SELECTION

The requested pin is outwith the available range.

IOMUX_UNABLE_TO_ROUTE_SIGNAL

The requested signal could not be routed to the requested pin.

IOMUX_INVLAID_IOCELL_DRIVE_CURRENT

The requested IO cell drive current is invalid.

IOMUX_INVLAID_IOCELL_TRIGGER

The requested IO cell trigger value is invalid.

IOMUX_INVLAID_IOCELL_SLEW_RATE

The requested IO cell slew rate is invalid.

IOMUX_INVLAID_IOCELL_PULL

The requested IO cell pull value is invalid.

IOMUX_ERROR

An error occurred.

4.1.13.2.2 vos_iomux_define_input() and vos_iomux_define_output()

Syntax

uint8 vos_iomux_define_input(uint8 pin, uint8 signal);

uint8 vos_iomux_define_output(uint8 pin, uint8 signal);

Copyright © 2012 Future Technology Devices International Ltd. 235

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Route the specified input or output signal to the specified pin.

Parameters

pin

The pin number that the requested signal should be routed to.

signal

The requested signal.

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

It is not possible to route every signal to every pin. Any given signal can be routed to every 4th IO
pin on a package. The return code indicates if the requested routing has been successful.

When re-routing a default output signal with a successful call to vos_iomux_define_output(), the
signal will be present on both the default pin and the pin specified in the call. The output signal on
the default pin can be turned off with a call to vos_iomux_disable_output(), or will be overridden
with a call to vos_iomux_define_input(), vos_iomux_define_output() or vos_iomux_define_bidi() if
the default pin is to be reused for a different signal.

4.1.13.2.3 vos_iomux_define_bidi()

Syntax

uint8 vos_iomux_define_input(uint8 pin, uint8 input_signal, uint8 output_signal);

Description

Route the specified input and output signals to the specified pin.

Parameters

pin

The pin number that the requested signal should be routed to.

input_signal

The requested input signal.

output_signal

The requested output signal.

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

This function is intended for use when routing pins for peripherals with bidirectional signals (FIFO,
GPIO and SPI Master). All other signals should be routed as either input or output using the
vos_iomux_define_input and vos_iomux_define_output functions.

Note that in the case of bidirectional GPIO signals the mask must be changed to input or output as
required using the VOS_IOCTL_GPIO_SET_MASK IOCTL call.

It is not possible to route every signal to every pin. Any given signal can be routed to every 4th IO
pin on a package. The return code indicates if the requested routing has been successful.

Copyright © 2012 Future Technology Devices International Ltd. 236

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.1.13.2.4 vos_iomux_disable_output()

Syntax

uint8 vos_iomux_disable_output(uint8 pin);

Description

Disable signal output on the specified pin.

Parameters

pin

The pin number that signal output should be disabled on.

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

When routing an output signal, it is possible to route it to more than one pin on the VNC2 package.
If a pin is assigned an output signal by default and it is not reused, the signal will be present on
both the default pin and the pin the signal has intentionally been routed to.

This function is provided to allow the default pin to be disabled in the case where it is not reused for
a non-default signal.

Note that input signals can only be routed to one pin at a time. This function only applies to output
signals. If an input signal is present on the pin specified for a call to vos_iomux_disable_output(), it
is unaffected.

4.1.13.2.5 vos_iocell_get_config()

Syntax

uint8 vos_iocell_get_config(uint8 pin, uint8 *drive_current, uint8 *trigger, uint8 *slew_rate, uint8 *pull);

Description

Retrieve the IO cell configuration for the specified pin.

Parameters

pin

The pin number that the requested signal should be routed to.

drive_current

A pointer to the current drive strength setting. Valid options are
VOS_IOCELL_DRIVE_CURRENT_4MA, VOS_IOCELL_DRIVE_CURRENT_8MA,
VOS_IOCELL_DRIVE_CURRENT_12MA and VOS_IOCELL_DRIVE_CURRENT_16MA

trigger

A pointer to the current trigger setting. Valid options are VOS_IOCELL_TRIGGER_NORMAL and
VOS_IOCELL_TRIGGER_SCHMITT

slew_rate

A pointer to the current slew rate setting. Valid options are VOS_IOCELL_SLEW_RATE_FAST
and VOS_IOCELL_SLEW_RATE_SLOW

pull

A pointer to the current pull-up/pull-down setting. Valid options are VOS_IOCELL_PULL_NONE,
VOS_IOCELL_PULL_DOWN_75K, VOS_IOCELL_PULL_UP_75K and VOS_IOCELL_PULL_KEEPER_75K

Copyright © 2012 Future Technology Devices International Ltd. 237

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

This function retrieves the current configuration of the IO cell corresponding to the specified pin.

4.1.13.2.6 vos_iocell_set_config()

Syntax

uint8 vos_iocell_set_config(uint8 pin, uint8 drive_current, uint8 trigger, uint8 slew_rate, uint8 pull);

Description

Set the IO cell configuration for the specified pin.

Parameters

pin

The pin number that the requested signal should be routed to.

drive_current

The drive strength to set. Valid options are VOS_IOCELL_DRIVE_CURRENT_4MA,
VOS_IOCELL_DRIVE_CURRENT_8MA, VOS_IOCELL_DRIVE_CURRENT_12MA and
VOS_IOCELL_DRIVE_CURRENT_16MA

trigger

The trigger value to set. Valid options are VOS_IOCELL_TRIGGER_NORMAL and
VOS_IOCELL_TRIGGER_SCHMITT

slew_rate

The slew rate setting to set. Valid options are VOS_IOCELL_SLEW_RATE_FAST and
VOS_IOCELL_SLEW_RATE_SLOW

pull

The pull-up/pull-down setting to set. Valid options are VOS_IOCELL_PULL_NONE,
VOS_IOCELL_PULL_DOWN_75K, VOS_IOCELL_PULL_UP_75K and VOS_IOCELL_PULL_KEEPER_75K

Returns

An IOMux request will always return one of the IOMux status codes.

Comments

This function configures the IO cell corresponding to the specified pin as requested. If the specified
pin is not available or an invalid parameter has been passed with the request an appropriate IOMux
status code is returned.

4.1.13.3 GPIO Service

The GPIO service provides simple access to VNC2's 40 on-chip GPIO pins. The pins are grouped in to
5 ports, each 1 byte wide.

The GPIO service provides functions to read and write to and from the GPIO, as well as configurable
interrupts.

The GPIO service functions are available to call at any time after vos_init() has been called, with the
exception of the interrupt functions which can only be used once the VOS scheduler has been
started with a call to vos_start_scheduler().

Copyright © 2012 Future Technology Devices International Ltd. 238

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.1.13.3.1 GPIO Service Return Codes

Calls to the GPIO kernel service may return one of the following status codes:

GPIO_OK

The requested function call completed successfully.

GPIO_INVALID_PIN

The pin specified is outside the valid range.

GPIO_INVALID_PORT

The port specified is outside the valid range.

GPIO_INVALID_PARAMETER

An invalid parameter has been passed to the GPIO function.

GPIO_INVALID_INTERRUPT

The interrupt specified is outside the valid range.

GPIO_INVALID_INTERRUPT_TYPE

The interrupt type specified is outside the valid range.

GPIO_INTERRUPT_NOT_ENABLED

The interrupt specified in the call to a wait function is not enabled.

GPIO_ERROR

An error occurred.

4.1.13.3.2 vos_gpio_set_pin_mode()

Syntax

uint8 vos_gpio_set_pin_mode(uint8 pinId, uint8 mask);

Description

Define a GPIO pin as input (0) or output (1).

Parameters

pinId

The GPIO pin identifier. Valid values are in the range GPIO_A_0 to GPIO_E_7.

mask

The direction that the GPIO should operate in - input (0) or output (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

All GPIO pins default to input. The IOMux configuration for the physical IC pin must match the
direction specified.

4.1.13.3.3 vos_gpio_set_port_mode()

Syntax

uint8 vos_gpio_set_port_mode(uint8 portId, uint8 mask);

Description

Define the pins of a GPIO port as input (0) or output (1).

Parameters

portId

The GPIO port identifier. Valid values are GPIO_PORT_A, GPIO_PORT_B, GPIO_PORT_C,

Copyright © 2012 Future Technology Devices International Ltd. 239

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

GPIO_PORT_D or GPIO_PORT_E.

mask

A bit mask of the direction that each pin on the port should operate in - input (0) or output
(1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

All GPIO pins default to input. The IOMux configuration for the physical IC pin must match the
direction specified.

4.1.13.3.4 vos_gpio_set_all_mode()

Syntax

uint8 vos_gpio_set_all_mode(vos_gpio_t *masks);

Description

Define all GPIO pins as input (0) or output (1).

Parameters

masks

A pointer to a vos_gpio_t structure specifying the bit mask of the direction that each GPIO
pin on the device should operate in - input (0) or output (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

All GPIO pins default to input. The IOMux configuration for the physical IC pin must match the
direction specified.

4.1.13.3.5 vos_gpio_read_pin()

Syntax

uint8 vos_gpio_read_pin(uint8 pinId, uint8 *val);

Description

Reads the value of the specified GPIO pin.

Parameters

pinId

The GPIO pin identifier. Valid values are in the range GPIO_A_0 to GPIO_E_7.

val

A pointer to the value read from the GPIO pin - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to read a valid value from a GPIO pin, the pin direction must have been specified as input
with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port_mode() or vos_gpio_set_all_mode().

Copyright © 2012 Future Technology Devices International Ltd. 240

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Also, the IOMux routing must be configured as input or bi-directional for the physical IC pin.

If a pin is specified as output then a 0 will be returned for that pin.

4.1.13.3.6 vos_gpio_read_port()

Syntax

uint8 vos_gpio_read_port(uint8 portId, uint8 *val);

Description

Reads the value of the specified GPIO port.

Parameters

portId

The GPIO port identifier. Valid values are GPIO_PORT_A, GPIO_PORT_B, GPIO_PORT_C,
GPIO_PORT_D or GPIO_PORT_E.

val

A pointer to the value read from the GPIO port. The value read is a bit-mask of each GPIO
pin of the port - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to read a valid value from a GPIO port, the port pins direction must have been specified as
input with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port_mode() or vos_gpio_set_all_mode
(). Also, the IOMux routing must be configured as input or bi-directional for the physical IC pins.

If a pin is specified as output then a 0 will be returned for that pin.

4.1.13.3.7 vos_gpio_read_all()

Syntax

uint8 vos_gpio_read_all(vos_gpio_t *vals);

Description

Reads the value of all GPIO ports.

Parameters

vals

A pointer to the values read from each of the GPIO ports. The value read for each port is a
bit-mask of each GPIO pin of the port - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to read a valid value from a GPIO port, the port pins direction must have been specified as
input with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port_mode() or vos_gpio_set_all_mode
(). Also, the IOMux routing must be configured as input or bi-directional for the physical IC pins.

If a pin is specified as output then a 0 will be returned for that pin.

4.1.13.3.8 vos_gpio_write_pin()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 241

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

uint8 vos_gpio_write_pin(uint8 pinId, uint8 val);

Description

Writes the value to the specified GPIO pin.

Parameters

pinId

The GPIO pin identifier. Valid values are in the range GPIO_A_0 to GPIO_E_7.

val

The value to write to the GPIO pin - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to write a valid value to a GPIO pin, the pin direction must have been specified as output
with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port_mode() or vos_gpio_set_all_mode().
Also, the IOMux routing must be configured as output or bi-directional for the physical IC pins.

If a pin is specified as input then the value requested will not be written to that pin.

4.1.13.3.9 vos_gpio_write_port()

Syntax

uint8 vos_gpio_write_port(uint8 portId, uint8 val);

Description

Writes the value to the specified GPIO port.

Parameters

portId

The GPIO port identifier. Valid values are GPIO_PORT_A, GPIO_PORT_B, GPIO_PORT_C,
GPIO_PORT_D or GPIO_PORT_E.

val

The value to write to the GPIO port. The value read is a bit-mask of each GPIO pin of the
port - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to write a valid value to a GPIO port, the port pins direction must have been specified as
output with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port_mode() or
vos_gpio_set_all_mode(). Also, the IOMux routing must be configured as output or bi-directional for
the physical IC pins.

If a pin is specified as input then the value requested will not be written to that pin.

4.1.13.3.10 vos_gpio_write_all()

Syntax

uint8 vos_gpio_write_all(vos_gpio_t *vals);

Description

Writes the values to all GPIO ports.

Copyright © 2012 Future Technology Devices International Ltd. 242

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

vals

A pointer to the values to write to each of the GPIO ports. The value written to each port is
a bit-mask of each GPIO pin of the port - low (0) or high (1).

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

In order to write a valid value to a GPIO port, the port pins direction must have been specified as
output with a call to vos_gpio_set_pin_mode(), vos_gpio_set_port_mode() or
vos_gpio_set_all_mode(). Also, the IOMux routing must be configured as output or bi-directional for
the physical IC pins.

If a pin is specified as input then the value requested will not be written to that pin.

4.1.13.3.11 vos_gpio_enable_int()

Syntax

uint8 vos_gpio_enable_int(uint8 intNum, uint8 intType, uint8 pinId);

Description

Enables a GPIO interrupt with the specified features.

Parameters

intNum

The GPIO interrupt to use. Valid values are GPIO_INT_0, GPIO_INT_1, GPIO_INT_2,
GPIO_INT_3 or GPIO_INT_PORT_A.

intType

The type of interrupt to fire. Valid values are GPIO_INT_ON_POS_EDGE, GPIO_INT_ON_NEG_EDGE,
GPIO_INT_ON_ANY_EDGE, GPIO_INT_ON_LOW_STATE or GPIO_INT_ON_HIGH_STATE. This value is
ignored if intNum is GPIO_INT_PORT_A as this will fire for any state change of a GPIO port A
pin.

pinId

The GPIO pin identifier to associate the interrupt with. Valid values are in the range
GPIO_A_0 to GPIO_E_7. This value is ignored if intNum is GPIO_INT_PORT_A as this is
associated with all of the pins on GPIO port A.

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

GPIO interrupts must be enabled in order to wait on interrupts with vos_gpio_wait_on_int(),
vos_gpio_wait_on_any_int() or vos_gpio_wait_on_all_ints().

4.1.13.3.12 vos_gpio_disable_int()

Syntax

uint8 vos_gpio_disable_int(uint8 intNum);

Description

Disables a GPIO interrupt previously enabled with a call to vos_gpio_enable_int.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 243

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

intNum

The GPIO interrupt to disable. Valid values are GPIO_INT_0, GPIO_INT_1, GPIO_INT_2,
GPIO_INT_3 or GPIO_INT_PORT_A.

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

4.1.13.3.13 vos_gpio_wait_on_int()

Syntax

uint8 vos_gpio_wait_on_int(uint8 intNum);

Description

Waits for a GPIO interrupt previously enabled with a call to vos_gpio_enable_int to fire.

Parameters

intNum

The GPIO interrupt to wait for. Valid values are GPIO_INT_0, GPIO_INT_1, GPIO_INT_2,
GPIO_INT_3 or GPIO_INT_PORT_A.

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

Calls to this function will block the calling thread until the specified GPIO interrupt has fired. GPIO
interrupts are enabled with a call to vos_gpio_enable_int.

4.1.13.3.14 vos_gpio_wait_on_any_int()

Syntax

uint8 vos_gpio_wait_on_any_int(uint8 *intNum);

Description

Waits for any active GPIO interrupt previously enabled with a call to vos_gpio_enable_int to fire.

Parameters

intNum

A pointer to the GPIO interrupt that fired. Valid values are GPIO_INT_0, GPIO_INT_1,
GPIO_INT_2, GPIO_INT_3 or GPIO_INT_PORT_A.

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

Calls to this function will block the calling thread until one of the enabled GPIO interrupts has fired.
GPIO interrupts are enabled with a call to vos_gpio_enable_int.

4.1.13.3.15 vos_gpio_wait_on_all_ints()

Syntax

uint8 vos_gpio_wait_on_all_ints(void);

Copyright © 2012 Future Technology Devices International Ltd. 244

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Waits for all active GPIO interrupt previously enabled with a call to vos_gpio_enable_int to fire.

Parameters

There are no parameters

Returns

A GPIO request will always return one of the GPIO Service Return Codes.

Comments

Calls to this function will block the calling thread until all of the enabled GPIO interrupts have fired.
GPIO interrupts are enabled with a call to vos_gpio_enable_int.

4.1.13.4 Memory Management

The memory management service allows direct access to the heap and optimised memory copy and
memory write routines. The vos_malloc, vos_free, vos_memcpy and vos_memset functions are the
called by equivalent functions in the stdlib and string libraries.

4.1.13.4.1 vos_malloc

Syntax

void *vos_malloc (size_t size);

Description

Performs a malloc operation which allocates space on the heap. This is called by the library function
malloc in stdlib library.

Parameters

size

Size of the memory block, in bytes.

Return Value

A pointer to the memory block allocated by the function. If the function failed to allocate the
requested block of memory, a NULL pointer is returned.

4.1.13.4.2 vos_free

Syntax

void vos_free(void *ptr);

Description

Performs a free operation which returns previously allocated space to the heap. This is called by the
library function free in stdlib library.

Parameters

ptr

Pointer to a memory block previously allocated with malloc or calloc to be deallocated.

Return Value

The free function returns no value.

Copyright © 2012 Future Technology Devices International Ltd. 245

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.1.13.4.3 vos_heap_size

Syntax

unsigned short vos_stack_usage(vos_tcb_t *tcb);

Description

Used to find the size of the heap allocated to the application.

Returns

Total number of bytes in the applications heap space. The vos_heap_space function can be used to
find the remaining space in the heap.

Comments

The heap is the memory remaining after global and static variables are assigned. This can be used
for thread and driver memory as well as by malloc (and vos_malloc) requests in the application.

While the main() function is running, some heap space is used for the stack of that function. After
vos_start_scheduler() is called, this space is returned to the heap.

4.1.13.4.4 vos_heap_space

Syntax

void vos_heap_space(size_t *hfree, size_t *hmax)

Description

Used to find the available size of the heap and the maximum block size which may be allocated.

Returns

hfree

The total number of bytes available to the heap. This may be non-contiguous and it may not
be able to allocate all of this space in a single malloc request.

hmax

The size of the largest block of heap which may be allocated in a single malloc request.

4.1.13.4.5 vos_memcpy

Syntax

void * vos_memcpy (void * destination, const void * source, size_t num);

Description

This function performs an optimised kernel level copy of a block of memory. It implements the
memcpy function from the string library.

Parameters

destination

Pointer to the destination array where the content is to be copied, type-cast to a pointer of
type void*.

source

Pointer to the source of data to be copied, type-cast to a pointer of type void*.

num

Number of bytes to copy.

Copyright © 2012 Future Technology Devices International Ltd. 246

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Return Value

Destination pointer where the source content is copied to is returned.

4.1.13.4.6 vos_memset

Syntax

void * memset (void * ptr, int value, size_t num);

Description

This function performs an optimised kernel level block memory fill. It implements the memset function
from the string library.

Parameters

ptr

Pointer to the block of memory to fill.

value

Value to be set. The value is passed as an int, but the function fills the block of memory
using the unsigned char conversion of this value.

num

Number of bytes to be set to the value.

Return Value

Pointer where block of memory is filled with given value is returned.

4.2 FTDI Drivers

To facilitate communication between user applications and the hardware peripherals available on the
VNC2 IC, FTDI provides device drivers which work with VOS. In addition to the hardware device
drivers, FTDI provides function drivers which build upon the basic hardware device driver functionality
for a specific purpose.

For example, drivers for standard USB device classes may be created which build upon the USB host
hardware driver to implement a BOMS class, CDC, printer class or even a specific vendor class device
driver.

4.2.1 Hardware Device Drivers

The VNC2 IC contains several peripheral devices which the CPU has access to. These hardware
peripherals are:

UART

SPI Slave (x2)

SPI Master

Parallel FIFO

Timers (x3)

Pulse width modulators (x3)

GPIOs (x40, spread over 5 ports)

USB Host (x2)

USB Slave (x2)

In order for applications to communicate with these peripherals, device drivers are required.
Applications will communicate with the device drivers via a device manager.

4.2.1.1 UART, SPI and FIFO Drivers

The UART, SPI and FIFO drivers share a common calling interface. This consists of common IOCTL
codes and structures providing a transport neutral method of using these interfaces. IOCTL options

Copyright © 2012 Future Technology Devices International Ltd. 247

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

specifically targeted at one interface may be sent to the other interfaces without worrying about it
getting misinterpreted by the other interface.

The read and write interfaces are identical, allowing data to be read and written in the same way.

Return codes are standardised with identical success codes and common error codes.

There are only sufficient DMA resources available to have DMA enabled for 3 from the 5 interfaces
(UART, 2 SPI Slaves, 1 SPI Master and FIFO interface) to be open at the same time. Therefore DMA is
not enabled by default on any of these interfaces.

It is recommended that the UART, SPI and FIFO interfaces are used with DMA enabled.

The UART interface cannot be used above 115200 baud without DMA being enabled.

The SPI Slave and SPI Master can operate at frequencies up to one quarter of the CPU clock
frequency. The SPI Master can go as low as 1/256th of the CPU clock frequency.

When using the SPI Master the chip select signals SS_0 and SS_1 must be set using the IOCTL
operation. They do not toggle automatically when data is read or written.

Read operations from the SPI Master MUST be preceded by a write operation of exactly the same
size as the read operation. The way the SPI Master driver works is that data can only be clocked into
the chip only when a write occurs. If not enough data is waiting to be read then the driver will block.
Multiple write operations may be performed, up to the driver's buffer size, before the data need be
read from the driver. Likewise multiple read operations may be performed until all data in the read
buffer is processed.

Driver Hierarchy

UART Driver hierarchy:

UART Driver

VOS Kernel

UART Hardware

The uart_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

SPI Slave Driver hierarchy:

SPI Slave Driver

VOS Kernel

SPI Slave Hardware

The spislave_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

SPI Master Driver hierarchy:

SPI Master Driver

VOS Kernel

SPI Master Hardware

The spimaster_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

FIFO Driver hierarchy:

FIFO Driver

VOS Kernel

FIFO Hardware

The fifo_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

Copyright © 2012 Future Technology Devices International Ltd. 248

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Library Files

UART.a

SPISlave.a

SPIMaster.a

FIFO.a

Header Files

UART.h

SPISlave.h

SPIMaster.h

FIFO.h

4.2.1.1.1 Common Read and Write Operations

Syntax

vos_dev_read(VOS_HANDLE h, unsigned char *buffer,

unsigned short len, unsigned short *read);

vos_dev_write(VOS_HANDLE h, unsigned char *buffer,

unsigned short len, unsigned short *written);

Description

The UART, SPI and FIFO interfaces present the same read and write interfaces. All read and write
operations block until the required number of bytes have been sent or received.

Parameters

h

A handle to the device used for input or output. This device must be initialised and opened.

buffer

Pointer to a buffer from which to send data to the device (read) or to receive data from the
device (write).

len

Number of bytes to transfer to or from the buffer. The operation will block until the number
of bytes are transferred.

read

written

Optional parameter to inform the calling function how many bytes were read from or written
to the device. This may be less than the number of bytes requested in the len parameter if
there is an error.

This parameter may be NULL, in which case the value is not updated.

Returns

An interface specific return code. See the return code section of the driver. All success error
messages are the same value.

Example

// test buffer

char buf[64];

unsigned short num_read;

unsigned short num_written;

while (1)

{

uart_iocb.ioctl_code = VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS;

vos_dev_ioctl(hTest, &uart_iocb);

num_written = uart_iocb.get.queue_stat;

Copyright © 2012 Future Technology Devices International Ltd. 249

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// limit to 64 bytes per transaction

if (num_written > 64)

num_written = 64;

if (num_written)

{

if (vos_dev_read(hIn, buf, num_written, &num_read) == UART_OK)

{

if (num_read)

{

if (vos_dev_write(hOut, buf, num_read, &num_written) == UART_OK)

{

// success

}

}

}

}

} while (1);

4.2.1.1.2 Common IOCTL Calls

Calls to the IOCTL functions for the UART, SPI and FIFO interfaces take the form:

typedef struct _common_ioctl_cb_t {

unsigned char ioctl_code;

union {

unsigned long uart_baud_rate;

unsigned long spi_master_sck_freq;

unsigned char param;

void * data;

} set;

union {

unsigned long spi_master_sck_freq;

unsigned short queue_stat;

unsigned char param;

void * data;

} get;

} common_ioctl_cb_t;

The common codes supported by all interfaces are:

VOS_IOCTL_COMMON_RESET Reset the interface

VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS Get the number of bytes in the receive buffer

VOS_IOCTL_COMMON_GET_TX_QUEUE_STATUS Get the number of bytes in the transmit buffer

VOS_IOCTL_COMMON_ENABLE_DMA Acquire DMA channels and disable interrupts

VOS_IOCTL_COMMON_DISABLE_DMA Release DMA channels and enable interrupts

4.2.1.1.2.1 VOS_IOCTL_COMMON_RESET

Description

This IOCTL will perform a hardware reset of the interface.

Parameters

There are no other parameters to set.

Returns

There is no data returned.

The vos_dev_ioctl() call will always return a code indicating successful transaction for the UART, SPI

Copyright © 2012 Future Technology Devices International Ltd. 250

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

and FIFO interfaces.

Example

common_ioctl_cb_t spi_iocb;

spi_ioctl.ioctl_code = VOS_IOCTL_COMMON_RESET;

vos_dev_ioctl(hSPI, &spi_ioctl);

4.2.1.1.2.2 VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS

Description

Returns the number of bytes in the receive queue.

Parameters

There are no parameters to set.

Returns

The number of bytes in the receive buffer is returned in the queue_stat member of the get section of
the IOCTL structure.

The vos_dev_ioctl() call will always return a code indicating successful transaction for the UART, SPI
and FIFO interfaces.

Example

common_ioctl_cb_t uart_iocb; // UART iocb for getting bytes available.

unsigned short dataAvail = 0; // How much data is available to be read?

uart_iocb.ioctl_code = VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS;

vos_dev_ioctl(hMonitor, &uart_iocb);

dataAvail = uart_iocb.get.queue_stat; // How much data to read?

4.2.1.1.2.3 VOS_IOCTL_COMMON_GET_TX_QUEUE_STATUS

Description

Returns the number of bytes in the transmit queue.

Parameters

There are no parameters to set.

Returns

The number of bytes in the transmit buffer is returned in the queue_stat member of the get section
of the IOCTL structure.

The vos_dev_ioctl() call will always return a code indicating successful transaction for the UART, SPI
and FIFO interfaces.

Example

common_ioctl_cb_t uart_iocb; // UART iocb for getting bytes waiting to be sent.

unsigned short dataAvail = 0; // How much data is waiting in the queue?

uart_iocb.ioctl_code = VOS_IOCTL_COMMON_GET_TX_QUEUE_STATUS;

vos_dev_ioctl(hMonitor, &uart_iocb);

dataAvail = uart_iocb.get.queue_stat; // How much data is there?

Copyright © 2012 Future Technology Devices International Ltd. 251

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.1.2.4 VOS_IOCTL_COMMON_ENABLE_DMA

Description

This IOCTL will switch the interface from interrupt mode to DMA mode. The DMA has two different
modes of operation: DMA_ACQUIRE_AS_REQUIRED and DMA_ACQUIRE_AND_RETAIN.

DMA_ACQUIRE_AS_REQUIRED will attain an available DMA and will hold onto this only for the period
it takes to complete the read or write transaction. After this period the DMA will be released and
made freely available to any of the other peripherals.

DMA_ACQUIRE_AND_RETAIN will attain an available DMA and will hold onto this indefinitely. This will
mean that no other peripherals will have access to this DMA until a further
DMA_ACQUIRE_AS_REQUIRED IOCTL is called on the driver. The benefit of this approach is that
there will be no DMA setup overhead before each transaction, helping to boost data throughput.

Parameters

Set the required DMA mode: DMA_ACQUIRE_AS_REQUIRED or DMA_ACQUIRE_AND_RETAIN, with the
set member of the IOCTL structure.

Returns

The function returns no data.

The vos_dev_ioctl() call will return a code indicating successful transaction if there are sufficient DMA
resources otherwise it will indicate that DMA was not enabled.

Example

common_ioctl_cb_t uart_iocb;

uart_iocb.ioctl_code = VOS_IOCTL_COMMON_ENABLE_DMA;

uart_iocb.set = DMA_ACQUIRE_AS_REQUIRED;

vos_dev_ioctl(hMonitor,&uart_iocb);

4.2.1.1.2.5 VOS_IOCTL_COMMON_DISABLE_DMA

Description

This IOCTL will switch the interface from DMA mode to interrupt mode.

Parameters

There are no parameters to set.

Returns

The function returns no data.

The vos_dev_ioctl() call will return a code indicating successful transaction if the DMA resources were
allocated otherwise it will indicate an invalid parameter.

Example

common_ioctl_cb_t uart_iocb;

uart_iocb.ioctl_code = VOS_IOCTL_COMMON_DISABLE_DMA;

vos_dev_ioctl(hMonitor,&uart_iocb);

4.2.1.1.3 UART Driver

4.2.1.1.3.1 UART Return Codes

All calls to the UART driver will return one of the following status codes.

UART_OK

The command completed successfully.

UART_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

Copyright © 2012 Future Technology Devices International Ltd. 252

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

UART_DMA_NOT_ENABLED

A DMA operation was requested when DMA was not enabled.

UART_ERROR

An unspecified error occurred.

4.2.1.1.3.2 UART IOCTL Calls

The following IOCTL request codes are supported by the UART driver.

 VOS_IOCTL_UART_GET_MODEM_STATUS Get the modem status bits

VOS_IOCTL_UART_GET_LINE_STATUS Get the line status

VOS_IOCTL_UART_SET_BAUD_RATE Set the baud rate

VOS_IOCTL_UART_SET_FLOW_CONTROL Set flow control

VOS_IOCTL_UART_SET_DATA_BITS Set the number of data bits

VOS_IOCTL_UART_SET_STOP_BITS Set the number of stop bits

VOS_IOCTL_UART_SET_PARITY Set the parity

VOS_IOCTL_UART_SET_RTS Assert the RTS line

VOS_IOCTL_UART_CLEAR_RTS Deassert the RTS line

VOS_IOCTL_UART_SET_DTR Assert the DTR line

VOS_IOCTL_UART_CLEAR_DTR Deassert the DTR line

VOS_IOCTL_UART_SET_BREAK_ON Set the line break condition

VOS_IOCTL_UART_SET_BREAK_OFF Clear the line break condition

VOS_IOCTL_UART_SET_XON_CHAR Set the XON character

VOS_IOCTL_UART_SET_XOFF_CHAR Set the XOFF character

VOS_IOCTL_UART_WAIT_ON_MODEM_STATUS_
INT

Wait on a transmit status interrupt

VOS_IOCTL_UART_WAIT_ON_LINE_STATUS_INTWait on a line status interrupt

Description

Get the modem status. This is the CTS, DSR, RI lines and the DCD function.

Parameters

There are no other parameters to set.

Returns

A bit map of the modem signals in the param member of get is returned:

UART_MODEM_STATUS_CTS

UART_MODEM_STATUS_DSR

UART_MODEM_STATUS_DCD

UART_MODEM_STATUS_RI

Example

//wait for either CTS or DSR to be asserted

do

{

uart_iocb.ioctl_code = VOS_IOCTL_UART_GET_MODEM_STATUS;

uart_iocb.get.param = 0;

vos_dev_ioctl(hMonitor,&uart_iocb);

uart_iocb.get.param &= (UART_MODEM_STATUS_CTS | UART_MODEM_STATUS_DSR);

if (uart_iocb.get.param != (UART_MODEM_STATUS_CTS | UART_MODEM_STATUS_DSR))

Copyright © 2012 Future Technology Devices International Ltd. 253

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

{

break;

}

} while (1);

Description

Get the last line status value. The line status value will be reset after the application retrieves this
value.

Parameters

There are no other parameters to set.

Returns

The line status is returned as a bit map in the param member of get:

UART_LINE_STATUS_OE

UART_LINE_STATUS_PE

UART_LINE_STATUS_FE

UART_LINE_STATUS_BI

Example

uart_iocb.ioctl_code = VOS_IOCTL_UART_GET_LINE_STATUS;

uart_iocb.get.param = 0;

vos_dev_ioctl(hMonitor,&uart_iocb);

if (uart_iocb.get.param & UART_LINE_STATUS_PE))

{

// parity error detected

break;

}

} while (1);

Description

Set the baud rate. For non-standard baud rates, the UART driver will calculate the closest possible
baud rate.

The baud rate calculation is based on the CPU clock frequency. If the CPU clock frequency is changed
after the baud rate has been set then it must be set again to obtain the correct baud rate.

Parameters

Set the desired baud rate in the baud_rate member of set. No other fields need to be filled out.

Predefined values are available for:

UART_BAUD_300

UART_BAUD_600

UART_BAUD_1200

UART_BAUD_2400

UART_BAUD_4800

UART_BAUD_9600

UART_BAUD_19200

UART_BAUD_38400

UART_BAUD_57600

UART_BAUD_115200

UART_BAUD_256000

UART_BAUD_500000

UART_BAUD_1000000

UART_BAUD_1500000

UART_BAUD_2000000

UART_BAUD_3000000

Returns

Copyright © 2012 Future Technology Devices International Ltd. 254

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

If the baud rate cannot be set within an accuracy of +/-3% then UART_ERROR is returned.

Example

/* UART setup */

/* set baud rate to 9600 baud */

uart_iocb.ioctl_code = VOS_IOCTL_UART_SET_BAUD_RATE;

uart_iocb.set.uart_baud_rate = UART_BAUD_9600;

vos_dev_ioctl(hMonitor,&uart_iocb);

Description

Set the flow control scheme.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out.

Available flow control methods are:

UART_FLOW_NONE

UART_FLOW_RTS_CTS

UART_FLOW_DTR_DSR

UART_FLOW_XON_XOFF

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Example

/* set flow control */

uart_iocb.ioctl_code = VOS_IOCTL_UART_SET_FLOW_CONTROL;

uart_iocb.set.param = UART_FLOW_RTS_CTS;

vos_dev_ioctl(hMonitor,&uart_iocb);

Description

Set the number of data bits.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out

This can be set to:

UART_DATA_BITS_7

UART_DATA_BITS_8

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Example

/* set data bits */

uart_iocb.ioctl_code = VOS_IOCTL_UART_SET_DATA_BITS;

uart_iocb.set.param = UART_DATA_BITS_8;

vos_dev_ioctl(hMonitor,&uart_iocb);

Description

Set the number of stop bits.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out

This can be set to:

UART_STOP_BITS_1

UART_STOP_BITS_2

Copyright © 2012 Future Technology Devices International Ltd. 255

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Example

/* set stop bits */

uart_iocb.ioctl_code = VOS_IOCTL_UART_SET_STOP_BITS;

uart_iocb.set.param = UART_STOP_BITS_1;

vos_dev_ioctl(hMonitor,&uart_iocb);

Description

Set the parity.

Parameters

Set the desired baud rate in the param member of set. No other fields need to be filled out.

This can be set to:

UART_PARITY_NONE

UART_PARITY_ODD

UART_PARITY_EVEN

UART_PARITY_MARK

UART_PARITY_SPACE

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Example

/* set parity */

uart_iocb.ioctl_code = VOS_IOCTL_UART_SET_PARITY;

uart_iocb.set.param = UART_PARITY_NONE;

vos_dev_ioctl(hMonitor,&uart_iocb);

Description

Enables the RTS line to be controlled by the flow control if CTS/RTS is selected for flow control.

Parameters

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Unconditionally deassert the RTS line.

Parameters

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Enables the DTR line to be controlled by the flow control if DTR/DSR is selected for flow control.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 256

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Unconditionally deassert the DTR line.

Parameters

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Set line break condition

Parameters

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Clear line break condition

Parameters

No fields in the ioctl structure need to be filled out.

Returns

If the parameter is incorrect then UART_INVALID_PARAMETER will be returned.

Description

Set the XON character to be used for UART_FLOW_XON_XOFF.

Parameters

Set the desired character in the param member of set. No other fields need to be filled out.

Returns

The call does not return any value.

Description

Set the Xoff character to be used with UART_FLOW_XON_XOFF

Parameters

Set the desired character in the param member of set. No other fields need to be filled out

Returns

Copyright © 2012 Future Technology Devices International Ltd. 257

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The call does not return any value.

Description

Wait on a modem status interrupt (CTS, DSR, RI, DCD, BUSY). Note that a call with this IOCTL code
will not return until a change in the modem status occurs.

Parameters

No other fields in the ioctl structure need to be filled out.

Returns

A bit map of the modem signals in the param member of get is returned:

UART_MODEM_STATUS_CTS

UART_MODEM_STATUS_DSR

UART_MODEM_STATUS_DCD

UART_MODEM_STATUS_RI

Description

Wait on a line status interrupt (OE, PE, SE, BI) Note that a call with this IOCTL code will not return
until a change in the line status occurs.

Parameters

No other fields in the ioctl structure need to be filled out.

Returns

The line status is returned in the param member of get:

UART_LINE_STATUS_OE

UART_LINE_STATUS_PE

UART_LINE_STATUS_FE

UART_LINE_STATUS_BI

4.2.1.1.3.3 uart_init()

Syntax

unsigned char uart_init (

unsigned char devNum,

uart_context_t* context

);

Description

Initialise the UART driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNum parameter.

context

The second parameter, context, is used to specify a buffer size for the receive and transmit
buffers. If the context pointer is NULL then the default buffer size of 64 bytes is used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

Copyright © 2012 Future Technology Devices International Ltd. 258

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The context parameter must be of the form of the structure defined below:

typedef struct _uart_context_t {

unsigned char buffer_size;

} uart_context_t;

4.2.1.1.4 FIFO Driver

4.2.1.1.4.1 FIFO Return Codes

All calls to the FIFO driver will return one of the following status codes.

FIFO_OK

The command completed successfully.

FIFO_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

FIFO_DMA_NOT_ENABLED

A DMA operation was requested when DMA was not enabled.

FIFO_ERROR

An unspecified error occurred.

4.2.1.1.4.2 FIFO IOCTL Calls

The following IOCTL request codes are supported by the FIFO driver.

VOS_IOCTL_FIFO_GET_STATUS Get the FIFO status

VOS_IOCTL_FIFO_SET_MODE Set the FIFO mode

Description

Get the FIFO status.

Parameters

There are no parameters to set.

Returns

This is returned as a bit map of the FIFO status in the param member of get:

FIFO_STATUS_READ_NOT_FULL

Example

//wait for either FIFO status to be not full

do

{

fifo_iocb.ioctl_code = VOS_IOCTL_FIFO_GET_STATUS;

fifo_iocb.get.param = 0;

vos_dev_ioctl(hMonitor,&fifo_iocb);

if (uart_iocb.get.param != (FIFO_STATUS_READ_NOT_FULL))

{

break;

}

} while (1);

Description

Set the FIFO mode to be synchronous or asynchronous.

Parameters

The mode is set in the param member of set:

FIFO_MODE_ASYNCHRONOUS

Copyright © 2012 Future Technology Devices International Ltd. 259

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

FIFO_MODE_SYNCHRONOUS

Returns

If the parameter is invalid then FIFO_INVALID_PARAMETER is returned.

Example

fifo_iocb.ioctl_code = VOS_IOCTL_FIFO_SET_MODE;

fifo_iocb.set.param = FIFO_MODE_SYNCHRONOUS;

vos_dev_ioctl(hMonitor,&fifo_iocb);

4.2.1.1.4.3 fifo_init()

Syntax

unsigned char fifo_init (

unsigned char devNum,

fifo_context_t* context

);

Description

Initialise the FIFO driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNum parameter.

context

The second parameter, context, is used to specify a buffer size for the receive and transmit
buffers. If the context pointer is NULL then the default buffer size of 64 bytes is used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The context parameter must be of the form of the structure defined below:

typedef struct _fifo_context_t {

unsigned char buffer_size;

} fifo_context_t;

4.2.1.1.5 SPI Slave Driver

4.2.1.1.5.1 SPI Slave Return Codes

All calls to the SPI Slave driver will return one of the following status codes.

SPISLAVE_OK

The command completed successfully.

SPISLAVE_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

SPISLAVE_DMA_NOT_ENABLED

A DMA operation was requested when DMA was not enabled.

SPISLAVE_ERROR

An unspecified error occurred.

4.2.1.1.5.2 SPI Slave IOCTL Calls

The following IOCTL request codes are supported by the SPI Slave driver.

Copyright © 2012 Future Technology Devices International Ltd. 260

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_SPI_SLAVE_GET_STATUS Get SPI Slave status

VOS_IOCTL_SPI_SLAVE_SCK_CPHA Set the SCK phase

VOS_IOCTL_SPI_SLAVE_SCK_CPOL Set the SCK polarity

VOS_IOCTL_SPI_SLAVE_DATA_ORDER Set the data transmit order

VOS_IOCTL_SPI_SLAVE_SET_ADDRESS Set the SPI slave address

VOS_IOCTL_SPI_SLAVE_SET_MODE Set the SPI mode

Description

Not used in the SPI Slave Driver. Always returns zero.

Parameters

There are no parameters to set.

Returns

This returns zero in the param member of get.

Example

Description

Set the clock phase of the SPI Slave. Data can be clocked in on either the rising edge or falling edge
of the clock.

Parameters

The phase is set in the param member of set:

SPI_SLAVE_SCK_CPHA_0

Data is latched from SDI on the SPI clk leading edge and loaded onto SDO on the SPI clk
trailing edge

SPI_SLAVE_SCK_CPHA_1

Data is latched from SDI on the SPI clk trailing edge and loaded onto SDO on the SPI clk
leading edge

Returns

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

// set clock phase

spis_iocb.ioctl_code = VOS_IOCTL_SPI_SLAVE_SCK_CPHA;

spis_iocb.set.param = SPI_SLAVE_SCK_CPHA_0;

vos_dev_ioctl(hSpiSlave,&spis_iocb);

Description

Set the clock polarity of the SPI Slave. The clock input can be active high or low.

Parameters

The polarity is set in the param member of set:

SPI_SLAVE_SCK_CPOL_0

Active high clk, SCK low in idle.

SPI_SLAVE_SCK_CPOL_1

Active low clk, SCK high in idle.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 261

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

// set clock polarity

spis_iocb.ioctl_code = VOS_IOCTL_SPI_SLAVE_SCK_CPOL;

spis_iocb.set.param = SPI_SLAVE_SCK_CPOL_0;

vos_dev_ioctl(hSpiSlave,&spis_iocb);

Description

Set the data order of the SPI Slave. Data can be transmitted and received either MSB or LSB first.

Parameters

The data order is set in the param member of set:

SPI_SLAVE_DATA_ORDER_MSB
MSB transmitted first.

SPI_SLAVE_DATA_ORDER_LSB
LSB transmitted first.

Returns

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

// set data order

spis_iocb.ioctl_code = VOS_IOCTL_SPI_SLAVE_DATA_ORDER;

spis_iocb.set.param = SPI_SLAVE_DATA_ORDER_MSB;

vos_dev_ioctl(hSpiSlave,&spis_iocb);

Description

Set the address of the SPI Slave. This can be in the range 0 to 7.

Parameters

The address is set in the param member of set.

Returns

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

// set address of slave

spis_iocb.ioctl_code = VOS_IOCTL_SPI_SLAVE_SET_ADDRESS;
spis_iocb.set.param = 1;

vos_dev_ioctl(hSpiSlave,&spis_iocb);

Description

Set the operation mode of the SPI slave.

Parameters

The 5 modes of operation available are set in the param member of the set structure.

SPI_SLAVE_MODE_FULL_DUPLEX

SPI_SLAVE_MODE_HALF_DUPLEX_4_PIN

SPI_SLAVE_MODE_HALF_DUPLEX_3_PIN

SPI_SLAVE_MODE_UNMANAGED

SPI_SLAVE_MODE_VI_COMPATIBLE

Please refer to the data sheet for information about each mode. For compatibility with standard SPI
implementations use the "unmanaged" mode. For compatibility with VNC1L applications use "V1
Compatible" mode.

Copyright © 2012 Future Technology Devices International Ltd. 262

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

If the parameter is invalid then SPISLAVE_INVALID_PARAMETER is returned.

Example

// set SPI mode

spis_iocb.ioctl_code = VOS_IOCTL_SPI_SLAVE_SET_MODE;

spis_iocb.set.param = SPI_SLAVE_MODE_VI_COMPATIBLE;

vos_dev_ioctl(hSpiSlave,&spis_iocb);

4.2.1.1.5.3 spislave_init()

Syntax

unsigned char spislave_init (

unsigned char devNum,

spislave_context_t* context

);

Description

Initialise the SPI Slave driver and registers the driver with the Device Manager. There are 2
independent SPI Slaves. A separate driver is required for each SPI Slave.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNum parameter.

context

The second parameter, context, is used to specify a buffer size for the receive and transmit
buffers. If the context pointer is NULL then the default buffer size of 64 bytes is used on
SPI Slave 0.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The context parameter must be of the form of the structure defined below:

typedef struct _spislave_context_t {

unsigned char slavenumber;

unsigned char buffer_size;

} spislave_context_t;

The slavenumber member can be either:

SPI_SLAVE_0

SPI_SLAVE_1

4.2.1.1.6 SPI Master Driver

4.2.1.1.6.1 SPI Master Return Codes

All calls to the SPI Master driver will return one of the following status codes.

SPIMASTER_OK

The command completed successfully.

SPIMASTER_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

SPIMASTER_DMA_NOT_ENABLED

A DMA operation was requested when DMA was not enabled.

SPIMASTER_ERROR

Copyright © 2012 Future Technology Devices International Ltd. 263

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

An unspecified error occurred.

4.2.1.1.6.2 SPI Master IOCTL Calls

The following IOCTL request codes are supported by the SPI Master driver.

VOS_IOCTL_SPI_MASTER_GET_STATUS Get SPI Master status

VOS_IOCTL_SPI_MASTER_SCK_CPHA Set the SCK phase

VOS_IOCTL_SPI_MASTER_SCK_CPOL Set the SCK polarity

VOS_IOCTL_SPI_MASTER_DATA_ORDER Set the data transmit order

VOS_IOCTL_SPI_MASTER_SS_0 Set the SPI master slave select 0

VOS_IOCTL_SPI_MASTER_SS_1 Set the SPI master slave select 1

VOS_IOCTL_SPI_MASTER_SET_SCK_FREQUENCY Set the SPI master clock frequency

VOS_IOCTL_SPI_MASTER_SET_DATA_DELAY Set the SPI master data delay between slave
select and data transmission in clock cycles

VOS_IOCTL_SPI_MASTER_AUTO_TOGGLE_SS Automatically toggle the slave select line

Description

Not used in the SPI Master Driver. Always returns zero.

Parameters

There are no parameters to set.

Returns

This returns zero in the param member of get.

Description

Set the clock phase of the SPI Master. Data can be clocked out on either the rising edge or falling
edge of the clock.

Parameters

The phase is set in the param member of set:

SPI_MASTER_SCK_CPHA_0

Data is latched from SDI on the SPI clk leading edge and loaded onto SDO on the SPI clk
trailing edge

SPI_MASTER_SCK_CPHA_1

Data is latched from SDI on the SPI clk trailing edge and loaded onto SDO on the SPI clk
leading edge

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

// set clock phase

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SCK_CPHA;

spim_iocb.set.param = SPI_MASTER_SCK_CPHA_0;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

Description

Copyright © 2012 Future Technology Devices International Ltd. 264

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Set the clock polarity of the SPI Master. The clock can be active high or low.

Parameters

The polarity is set in the param member of set:

SPI_MASTER_SCK_CPOL_0

Active high clk, SCK low in idle.

SPI_MASTER_SCK_CPOL_1

Active low clk, SCK high in idle.

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

// set clock polarity

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SCK_CPOL;

spim_iocb.set.param = SPI_MASTER_SCK_CPOL_0;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

Description

Set the data order of the SPI Master. Data can be transmitted and received either MSB or LSB first.

Parameters

The data order is set in the param member of set:

SPI_MASTER_DATA_ORDER_MSB
MSB transmitted first.

SPI_MASTER_DATA_ORDER_LSB
LSB transmitted first.

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

// set data order

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_DATA_ORDER;

spim_iocb.set.param = SPI_MASTER_DATA_ORDER_MSB;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

Description

Set the slave select line zero or one either active (low) or disabled (high). These signals do not
toggle automatically when data is read or written from the interface.

Parameters

The slave select signal is set in the param member of set:

SPI_MASTER_SS_ENABLE

Enable slave select signal (active low).

SPI_MASTER_SS_DISABLE

Disable the slave select signal.

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

Copyright © 2012 Future Technology Devices International Ltd. 265

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// set slave select 1 to enable

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SS_1;

spim_iocb.set.param = SPI_MASTER_SS_ENABLE;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

// SS_1 is enabled so can read from device

vos_dev_write(hSpiMaster,&data,dataLen,NULL);

// set slave select 1 to disable

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SS_1;

spim_iocb.set.param = SPI_MASTER_SS_DISABLE;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

Description

Set the SPI Master clock frequency. The divisor for the clock generator will be calculated and the
actual frequency obtained for the SPI Master will be returned.

The clock frequency calculation is based on the CPU clock frequency. If the CPU clock frequency is
changed after the SPI Master clock frequency is set then it must be set again to obtain the correct
frequency.

Parameters

The requested clock frequency is set in the spi_master_sck_freq member of set. A frequency
between 1/2 and 1/512 the CPU clock speed is allowed; this is equivalent to an SPI master clock
divisor of between 0 and 255 since the maximum SPI master clock frequency is half the CPU clock
frequency.

Returns

If the frequency requested is out of range then SPIMASTER_INVALID_PARAMETER is returned. The
closest obtainable frequency to the requested frequency is returned in the spi_master_sck_freq
member of the get structure.

Example

// set slave select 1 to disable

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SET_SCK_FREQUENCY;

spim_iocb.set.spi_master_sck_freq = 2000000;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

Description

Set the number of clock periods to delay sending data after the slave select signal is asserted. This
is only active when the slave select line is set close to the data send operation.

Parameters

The requested number of cycles to delay is set in the param member of set. Up to a maximum of 255
cycles.

Returns

If the number of cycles requested is out of range then SPIMASTER_INVALID_PARAMETER is returned.

Example

// set slave select 1 to disable

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SET_DATA_DELAY;

spim_iocb.set.param = 8;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

Description

Copyright © 2012 Future Technology Devices International Ltd. 266

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Automatically toggle the specified Slave Select (SS) lines during and SPI Master write operation to
improve performance.

Parameters

The selected SS line is set in the param member of set. This can be either
SPI_MASTER_SS_AUTO_TOGGLE_ENABLE_SS_0, SPI_MASTER_SS_AUTO_TOGGLE_ENABLE_SS_1,
SPI_MASTER_SS_AUTO_TOGGLE_DISABLE_SS_0 or SPI_MASTER_SS_AUTO_TOGGLE_DISABLE_SS_1.

Returns

If the parameter is invalid then SPIMASTER_INVALID_PARAMETER is returned.

Example

// set automatic SS toggling during write

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_AUTO_TOGGLE_SS;

if (useSS0)

spim_iocb.set.param = SPI_MASTER_SS_AUTO_TOGGLE_ENABLE_SS_0;

else

spim_iocb.set.param = SPI_MASTER_SS_AUTO_TOGGLE_ENABLE_SS_1;

vos_dev_ioctl(hSpiMaster,&spim_iocb);

4.2.1.1.6.3 spimaster_init()

Syntax

unsigned char spimaster_init (

unsigned char devNum,

spimaster_context_t* context

);

Description

Initialise the SPI Master driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNum parameter.

context

The second parameter, context, is used to specify a buffer size for the receive and transmit
buffers. If the context pointer is NULL then the default buffer size of 64 bytes is used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The context parameter must be of the form of the structure defined below:

typedef struct _spimaster_context_t {

unsigned char buffer_size;

} spimaster_context_t;

4.2.1.2 USB Host Driver

The USB Host driver consists of one driver instance which can control both USB host controllers on
the VNC2.

The USB Host driver will build a list of device interfaces available on the configured USB Ports. This is
maintained in memory structures and is searchable by an application. Requests to a device interface
must be routed through the correct driver handle to the appropriate USB Port.

The usbhost_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

Copyright © 2012 Future Technology Devices International Ltd. 267

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Driver Hierarchy

USB Host Driver hierarchy:

USBHost Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

Header Files

USBHost.h

USB.h (additional definitions for USB device classes and structures)

4.2.1.2.1 USB Host Concepts

Configuration

It can be configured to control either USB Port 1, USB Port 2 or both USB Ports. A unique
VOS_DEVICE handle and device number is required for each configured interface. If a port is
configured to be a USB Slave then it is not available for the USB Host.

Once the USB Host driver is configured it cannot be reconfigured.

Driver Handles

The USB Host driver will require 2 unique device numbers to register both USB Ports with the device
manager. If only one USB Port is configured then only one device number is required.

If both USB Ports are configured then the application will have 2 driver handles when both ports are
opened, one for each USB Port and effectively 2 device drivers active. They should be treated
separately by the application.

Root Hub

The VNC2 hardware consists of two independent USB Root Hubs each with one port. These are
controlled and managed by the USB Host driver. Control begins as soon as the USB Host driver is
configured.

The root hub can turn off or on the USB Ports.

When a device is connected to the root hub it will initiate an enumeration process to discover and
configure devices on that USB Port.

If a device is removed from a USB Port then the root hub will remove references to all devices
attached to that USB Port.

Downstream Hubs

Can be detected, configured and enumerated by the USB Host driver. Each downstream hub is
scanned periodically to check for hub port status changes including device removals and connects.

Device Interfaces

Each USB device which is enumerated may have several interfaces on the device. Each interface is
treated separately by the USB Host driver. A maximum number of device interfaces is specified in the
USB Host configuration routine.

Endpoints

Device interfaces will have a number of endpoints associated with them although they may share
the same control endpoint. A device interface can have either control, bulk, interrupt or isochronous.

Copyright © 2012 Future Technology Devices International Ltd. 268

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.1.1 USB Host Detecting Connections

The USB Host driver will automatically enumerate a USB bus when a device is connected to the Root
Hub or a downstream hub.

To detect if there is a device connected to the USB root hub the application can do one of several
things:

Perform an VOS_IOCTL_USBHOST_GET_CONNECT_STATE IOCTL call to the appropriate USB Port
driver. This will return PORT_STATE_ENUMERATED if a device is enumerated.

An alternative method would be to make a VOS_IOCTL_USBHOST_DEVICE_GET_COUNT which will
be non-zero if any devices have been enumerated.

Finally, either a VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE,
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID or
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS IOCTL call to the USB Port driver will
return a device handle if a matching device is connected. If there are no devices connected or the
port has not been enumerated then the driver will simply return an error.

When polling these IOCTLs, it is recommended that there is a short delay between polls.

If a notification of a change in enumeration is needed then the
VOS_IOCTL_USBHOST_GET_ENUMERATION_HANDLE method is used to detect any devices connected
or removed. This will report a change to devices enumerated on a downstream hub or the root hub.
Both connects and removes will be reported.

4.2.1.2.1.2 USB Host Using Handles

When finding devices connected to the USBHost controller a device handle must first be obtained.
From the device handle we can then obtain an endpoint handle. The endpoint handle is used for
sending and receiving data from the device.

There are two methods for maintaining and using device and endpoint handles. The first is 'basic'
handle mode which provides limited notification of device removal and is suitable when devices are
only connected to the root hub. The second mode is 'extended' handle mode which is better suited
to handling configurations that include downstream hubs.

Calling the VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED IOCTL will enable extended
handle mode for all handles in the USB Port.

If using extended mode then it should be enabled immediately after the USB Host controller driver is
opened, before any devices or endpoint handles are obtained.

In basic handle mode, the application should check VOS_IOCTL_USBHOST_GET_CONNECT_STATE for
a disconnection of a device from the root hub. If the device is disconnected then the application must
discard any handles it has for that USB Port as this is not done automatically. An error code will be
returned if an attempt is made to access a disconnected device (on the root hub). However, handles
may be reused if other devices are connected.

When extended handle mode is enabled, each handle is specific to an instance of a device being
enumerated. If the device is removed then a USBHOST_NOT_FOUND return code will be given when
either a device or endpoint handle is used. If this occurs then the handle for the device or endpoint
is invalid and the application must assume that it has been removed.

Each device which is enumerated on the USB Host controller will make one or more interfaces. These
can be controlled and accessed individually using a device handle. Each device handle refers to a
separate interface, although they may physically be on the same device.

There are two definitions for a device handle, one for basic handle mode and another for extended
handle mode:

typedef void * usbhost_device_handle; // basic handle mode

typedef int usbhost_device_handle_ex; // extended handle mode

The basic handle mode will be used until VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED
IOCTL is called. After which all handle accesses will be expected to be extended handles. Using basic
handles after this call will result in unpredictable results.

Copyright © 2012 Future Technology Devices International Ltd. 269

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Device handles found either by searching sequentially through devices connected to the host or by
finding devices based on class/subclass/protocol or VID/PID.

To find a device handle, the application must send one of the following IOCTL calls to the appropriate
USB Port driver:

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE - find the first or next device interface in the
list for the USB Port.

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID - search through the device interface
list for a device based on the VID and the PID of the device.

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS - search through the device interface list
for a device based on the USB class, subclass or protocol.

These IOCTL calls return a handle to a device interface. Due to the difference between basic and
extended handle mode it is recommended to specifically set all extended device interface handles to
zero before calling any of the find IOCTL calls.

Further information about each device interface can be found using the handle and one of these
IOCTL calls:

VOS_IOCTL_USBHOST_DEVICE_GET_VID_PID - get the VID and PID information from a device
interface handle.

VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO - get the USB class, subclass and protocol
information from a device interface handle.

VOS_IOCTL_USBHOST_DEVICE_GET_DEV_INFO - get general device information from a device
interface handle.

The device interface handle is valid until a device is removed from the USB Port or the USB Port (or
downstream hub) is re-enumerated.

Note: Do not declare device handles as pointers.

Device interfaces will have one or more endpoints. These can be control, bulk IN, bulk OUT, interrupt
IN, interrupt OUT, isochronous IN or isochronous OUT endpoints. Multiple device interfaces can share
the same control endpoints.

There are two definitions for an endpoint handle, one for basic handle mode and another for
extended handle mode:

typedef void * usbhost_ep_handle; // basic handle mode

typedef int usbhost_ep_handle_ex; // extended handle mode

The basic handle mode will be used until VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED
IOCTL is called. After which all handle accesses will be expected to be extended handles. Using basic
handles after this call will result in unpredictable results.

Starting from device interface handle the list of endpoints associated with the interface can be
traversed. The following IOCTLs are used to find an appropriate endpoint type for a device
interface:

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_INT_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_ISO_OUT_ENDPOINT_HANDLE

Once the first endpoint of a type is found, subsequent endpoints of that type can be found with the
VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_ENDPOINT_HANDLE call.

Due to the difference between basic and extended handle mode it is recommended to specifically set
all extended endpoint interface handles to zero before calling any of the get IOCTL calls.

The IOCTL call VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO can be used to find information
concerning the endpoint to establish if it is suitable for use by the application.

Copyright © 2012 Future Technology Devices International Ltd. 270

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.1.3 USB Host Sending and Receiving Data

When sending data to the read and write interfaces a special transfer structure is used. This
structure differs slightly for general endpoints (control, bulk or interrupt) and isochronous endpoints.

The transfer request structure is filled out with the required information about the target endpoint,
data location, data size and semaphore for completion notification. This structure is passed to the
read or write function for the USB Host driver.

The completion information is returned in the same structure.

4.2.1.2.2 USB Host Return Codes

Status Codes

All calls to the USB Host driver will return one of the following status codes.

USBHOST_OK

No error.

USBHOST_NOT_FOUND

Device or endpoint not found. The device may have been disconnected.

USBHOST_PENDING

Transaction has been started but the result not available.

USBHOST_INVALID_PARAMETER

A parameter is incorrect or has a mistake.

USBHOST_INVALID_BUFFER

The calling function did not specify a valid buffer.

USBHOST_INCOMPLETE_ENUM

Enumeration did not complete.

USBHOST_INVALID_CONFIGURATION

The configuration of the host controller is invalid and cannot support the current operation.

USBHOST_TD_FULL

No more transaction descriptors available.

USBHOST_EP_FULL

No more endpoint descriptors available.

USBHOST_IF_FULL

No more interface descriptors available.

USBHOST_EP_HALTED

An attempt was made to access a halted endpoint.

This is due to the endpoint in the USB Host Controller being halted.

USBHOST_EP_INVALID

An attempt was made to access an invalid endpoint.

USBHOST_INVALID_STATE

The internal status of the driver or hardware interface is invalid.

USBHOST_ERROR

An unspecified error occurred.

USBHOST_CC_ERROR

A USB transaction failed with a completion code. This is a mask containing the Completion
Code of the USB transaction in the lower nibble of the status code.

Completion Codes

When an error occurs on a Bulk, Interrupt or Isochronous, the endpoint in the USB Host Controller is
placed in a halted state. All subsequent calls to these endpoints will fail with USBHOST_EP_HALTED until
this is cleared with a call to VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT. It may also be
necessary to update the USB Host Controller's data toggle information and even send a USB SETUP
packet to clear an endpoint halt on the device.

Control endpoints cannot be halted and errors will not require the USB Host Controller endpoint halt

Copyright © 2012 Future Technology Devices International Ltd. 271

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

to be cleared. However, some Control endpoint errors will require a

USBHOST_CC_OK

Indicates successful completion of a transfer. No action required.

USBHOST_CC_CRC

Last data packet from endpoint contained a CRC error.

USBHOST_CC_BITSTUFFING

Last data packet from endpoint contained a bit stuffing violation.

USBHOST_CC_DATATOGGLEMISMATCH

Last packet from endpoint had data toggle PID that did not match the expected value.

A call to VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENDPOINT_CARRY can be used to re-
synchronise the data toggle before the USB Host Controller halt is cleared.

USBHOST_CC_STALL

Transaction failed because the endpoint returned a STALL PID.

Both the USB Host Controller and the device are halted and need to have their halt state
cleared. Use the VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT IOCTL call to
reset. This will also clear the halt in the USB Host Controller. The call must be made for
Control endpoints as well as Bulk, Interrupt and Isochronous.

USBHOST_CC_DEVICENOTRESPONDING

Device did not respond to token (IN) or did not provide a handshake (OUT).

USBHOST_CC_PIDCHECKFAILURE

Check bits on PID from endpoint failed on data PID (IN) or handshake (OUT).

USBHOST_CC_UNEXPECTEDPID

Receive PID was not valid when encountered or PID value is not defined.

USBHOST_CC_DATAOVERRUN

The amount of data returned by the endpoint exceeded either the size of the maximum
data packet allowed from the endpoint or the remaining buffer size.

USBHOST_CC_DATAUNDERRUN

The endpoint returned less than the Maximum Packet Size from the endpoint and that
amount was not sufficient to fill the specified buffer.

The USBHost controller endpoint is placed in the halt state. The failing transaction will
remain in the list of tasks to be performed for the endpoint. The USB Host Controller
endpoint state will be halted (the device itself will not be halted) and the endpoint data
toggle will not be updated. Use VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENDPOINT_CARRY
to update the endpoint data toggle before performing a
VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT to remove the halt state from the USB
Host Controller and restart the endpoint. For some devices all pending transactions may
need to be removed from the queue and restarted using
VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_TRANSFER before clearing the USB Host
Controller halt state.

USBHOST_CC_BUFFEROVERRUN

During an IN, the host controller received data from endpoint faster than it could be written
to system memory.

USBHOST_CC_BUFFERUNDERRUN

During an OUT, the host controller could not retrieve data from system memory fast enough
to keep up with data USB data rate.

USBHOST_CC_BUFFEROVERRUN_ISO

During an IN on an isochronous endpoint, the host controller received data from endpoint
faster than it could be written to system memory.

USBHOST_CC_BUFFERUNDERRUN_ISO

During an OUT on an isochronous endpoint, the host controller could not retrieve data from
system memory fast enough to keep up with data USB data rate.

USBHOST_CC_NOTACCESSED

This indicates that the transaction was not processed by the host controller. It does not
indicate an error.

It is used to initialise the completion code field in a transfer. When the transfer is completed
then the completion code in the transfer is changed.

Copyright © 2012 Future Technology Devices International Ltd. 272

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.3 USB Host Read and Write Operations

Description

To read and write to the USB Host a transfer block is used. This is a structure that is sent to
vos_dev_read() and vos_dev_write() to describe to the USB Host driver how to transfer data to an
endpoint.

It specifies the endpoint to target, the buffer for actual transaction data, data length, completion
code and a semaphore to use for either signalling the calling application or blocking the transaction.

In vos_dev_write() the num_to_write and num_written parameters are ignored and in vos_dev_read
() the num_to_read and num_read parameters are ignored as this information is provided and
returned in the transfer block.

The structure differs slightly for isochronous and general (bulk and interrupt) endpoints.

Note: For transactions to control endpoints the VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER
IOCTL call must be used.

To perform a USB Host transaction, the application must fill in the data in the transfer block and then
send a pointer to the transfer block to the diver using vos_dev_read() or vos_dev_write(). The driver
returns the status of the transaction in the same structure.

Return Values

USBHOST_NOT_FOUND
The device has been disconnected or the endpoint was not found.

USBHOST_EP_HALTED
A previous operation has resulted in the USB Host controller halting the endpoint. The halt
state must be cleared with a VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT call to
the endpoint

USBHOST_EP_INVALID
An OUT operation - vos_dev_write() - has been attempted on an IN endpoint or an IN
operation - vos_dev_read() - has been attempted on an OUT endpoint.

USBHOST_PENDING
No semaphore was provided with the transfer block therefore there will be no notification of
completion.

USBHOST_TD_FULL
No internal resources were available to the USB Host controller to complete the transfer.

4.2.1.2.3.1 USB Host General Transfer Block

Syntax

typedef struct _usbhost_xfer_t {

usbhost_ep_handle_ex ep;

vos_semaphore_t *s;

unsigned char cond_code;

unsigned char *buf;

unsigned short len;

unsigned char flags;

// internal driver use only

unsigned char resv1;

// MUST be set to zero

unsigned char zero;

} usbhost_xfer_t;

Description

The structure defined below is used for transactions on bulk and interrupt endpoints.

Parameters

ep

The endpoint handle must be first obtained using IOCTL calls. It is mandatory to specify an

Copyright © 2012 Future Technology Devices International Ltd. 273

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

endpoint in this structure.

s

An optional semaphore pointer can be specified which is supplied by the application to allow
either the read or write operation to block until completion or to allow the application to
receive a notification of the transfer completing.

If the semaphore is NULL then there is no notification of completion of a transaction. The
condition code member must be polled until a valid status is detected.

cond_code

The condition code is set by the completion of the transaction. It can optionally be set to
USBHOST_CC_NOTACCESSED to facilitate a manual check that the operation is completed
successfully.

buf

This is a pointer to a buffer that either receives the data from the transaction (read) or
where data for the transaction is taken from (write).

len

The maximum length (in bytes) of the data to transmit or to receive is set here before the
call to vos_dev_read() or vos_dev_write(). This is the maximum length, however, less data
than specified may be transferred.

When the operation completes, the value of len is updated to reflect the actual number of
bytes transferred. If an error occurred then the value of len will still be updated with the
number of bytes remaining to send.

flags

The following flags may be set for each transaction block:

USBHOST_XFER_FLAG_START_BULK_ENDPOINT_LIST

Transfers to Bulk endpoints will be started when the transaction block has been processed.
It is only necessary to set this flag for Bulk endpoints.

Interrupt and Isochronous endpoints must not set this flag.

If this flag is not set then the transaction block will be processed and queued but not
started. This is only used if multiple transaction blocks are to be queued. The last entry
added to the queue sets this flag to allow all entries in the queue to start. There must be
sufficient transfer blocks initialised for the driver in xfer_count parameter in the
usbhost_init() call.

USBHOST_XFER_FLAG_NONBLOCKING

If this flag is set then the vos_dev_read() or vos_dev_write() operation returns without
waiting for the USB transaction to complete. If a semaphore is specified then this can be
waited on until completion. If a semaphore is not set then this flag has no effect.

USBHOST_XFER_FLAG_ROUNDING

Not all USB transactions will use the maximum number of bytes in the len field. If a device
does return or accept the exact number of bytes in the len member then a data underrun
condition will be signalled unless this flag is set.

The flags set for a particular transaction block may affect other transactions by starting
their lists. They do not affect the blocking or rounding of other transactions.

resv1

Reserved for future use.

zero

For general transaction blocks this MUST be set to zero.

Remarks

The transfer blocks can be used in a flexible manner to send data to any endpoint on a USB host. It
provides a choice of a blocking operation or allowing an application to control when it receives
notification of completion.

The following members of the usbhost_xfer_t structure are updated by the calls to vos_dev_read()
and vos_dev_write() functions: cond_code and len. The remaining members are not modified during
the operation.

Copyright © 2012 Future Technology Devices International Ltd. 274

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

unsigned char sendData(usbhost_ep_handle_ex ep, unsigned char *buf,

unsigned short len)

{

usbhost_xfer_t xfer;

unsigned char status;

vos_semaphore_t s;

memset(&xfer, 0, sizeof(usbhost_xfer_t));

status = MY_OK;

vos_init_semaphore(&s, 0);

xfer.buf = buf;

xfer.len = len;

xfer.ep = ep;

xfer.s = s;

xfer.cond_code = USBHOST_CC_NOTACCESSED;

xfer.flags = USBHOST_XFER_FLAG_START_BULK_ENDPOINT_LIST;

status = vos_dev_write(hUSB1, (unsigned char *)&xfer, sizeof(usbhost_xfer_t), NULL);

if (status != USBHOST_OK) {

status |= MY_TRANSPORT_ERROR;

return status;

}

status = xfer.cond_code;

if (status != USBHOST_CC_NOERROR)

{

if (status == USBHOST_CC_STALL)

{

// recover endpoint

}

}

return status;

}

4.2.1.2.3.2 USB Host Isochronous Transfer Block

Syntax

typedef struct _usbhost_xfer_iso_t {

usbhost_ep_handle_ex ep;

vos_semaphore_t *s;

unsigned char cond_code;

unsigned char *buf;

unsigned short len;

unsigned char flags;

// internal driver use only

unsigned char resv1;

unsigned char count;

struct {

unsigned short size:11;

unsigned short pad:1;

unsigned short cond_code:4;

} len_psw[8];

unsigned short frame;

} usbhost_xfer_iso_t;

Description

The structure defined below is used for transactions on isochronous endpoints.

Parameters

ep

The endpoint handle must be first obtained using IOCTL calls. It is mandatory to specify an

Copyright © 2012 Future Technology Devices International Ltd. 275

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

endpoint in this structure.

s

An optional semaphore pointer can be specified which is supplied by the application to allow
either the read or write operation to block until completion or to allow the application to
receive a notification of the transfer completing.

If the semaphore is NULL then there is no notification of completion of a transaction. The
condition code member must be polled until a valid status is detected.

cond_code

The condition code is set by the completion of the transaction. It can optionally be set to
USBHOST_CC_NOTACCESSED to facilitate a manual check that the operation is completed
successfully.

buf

This is a pointer to a buffer that either receives the data from the transaction (read) or
where data for the transaction is taken from (write). The buffer must be large enough to
store all of the isochronous frame transfers declared in the count member.

len

The maximum length (in bytes) of the data to transmit or to receive is set here before the
call to vos_dev_read() or vos_dev_write(). This is the maximum length, however, less data
than specified may be transferred.

When the operation completes, the value of len is not updated. However, the transfer
length for each frame transaction is updated.

flags

The following flags may be set for each transaction block:

USBHOST_XFER_FLAG_NONBLOCKING

If this flag is set then the vos_dev_read() or vos_dev_write() operation returns without
waiting for the USB transaction to complete. If a semaphore is specified then this can be
waited on until completion. If a semaphore is not set then this flag has no effect.

USBHOST_XFER_FLAG_ROUNDING

Not all USB transactions will use the maximum number of bytes in the len field. If a device
does return or accept the exact number of bytes in the len member then a data underrun
condition will be signalled unless this flag is set.

resv1

Reserved for future use.

count

This specifies the number of consecutive frames of isochronous transactions perform. This
value tells the host controller how many len_psw entries are valid, up to a maximum of 8.

len_psw

An array containing 8 instances of isochronous frame transactions.

size

For each frame, this is the size of data to be transferred in that frame. In total, all sizes
specified in the each len_psw must add up to the len member.

cond_code

This is the condition code for each frame. Due to the nature of isochronous, not all errors in
a frame will result in an error in the main cond_code member, but each frame may be
checked separately.

Remarks

The configuration descriptor of an isochronous device interface is used to configure the period
between isochronous frame transfers. It is not necessary to configure this in the host controller
driver.

There can be up to 8 isochronous frame transactions. The individual frame transfers are stored
sequentially in the buffer pointer to by buf. If one fails then the len_psw's cond_code member for that
frame will report the error, the main cond_code will also report the error. The size member of the
len_psw structure will be updated with the actual size for each isochronous frame transfer.

The following members of the usbhost_xfer_iso_t structure are updated by the calls to
vos_dev_read() and vos_dev_write() functions: cond_code and both size and cond_code from each

Copyright © 2012 Future Technology Devices International Ltd. 276

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

affected len_psw. The remaining members are not modified during the operation.

4.2.1.2.4 USB Host IOCTL Calls

Calls to the IOCTL functions for the USB Host driver take the form:

typedef struct _usbhost_ioctl_cb_t {

unsigned char ioctl_code;

// hub port number (ignored on root hub)

unsigned char hub_port;

union

{

// handle of endpoint to use

usbhost_ep_handle_ex ep;

// handle of interface to use

usbhost_device_handle_ex dif;

} handle;

// read buffer

void *get;

// write butter

void *set;

} usbhost_ioctl_cb_t;

The following IOCTL request codes are supported by the USB Host driver.

VOS_IOCTL_USBHOST_GET_CONNECT_STATE Get host controller connect state

VOS_IOCTL_USBHOST_GET_ENUMERATION_HANDLE Get a handle which can be used
to detect enumeration changes

VOS_IOCTL_USBHOST_GET_USB_STATE Get host controller USB state

VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED Turns on extended handle
support

VOS_IOCTL_USBHOST_DEVICE_GET_CONFIGURATION Gets device configuration value

VOS_IOCTL_USBHOST_DEVICE_SET_CONFIGURATION Sets device configuration value

VOS_IOCTL_USBHOST_DEVICE_GET_COUNT Get host controller device count

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE Get handle to device interface on
USB host

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID Find a device interface by VID and
PID

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS Find a device interface by USB
class

VOS_IOCTL_USBHOST_DEVICE_GET_VID_PID Get VID and PID of device
interface

VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO Get USB class information for
device interface

VOS_IOCTL_USBHOST_DEVICE_GET_DEV_INFO Get information on device
interface

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDL
E

Get first control endpoint for
device interface

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE Get first bulk in endpoint for
device interface

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDL
E

Get first bulk out endpoint for
device interface

VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE Get first interrupt in endpoint for
device interface

VOS_IOCTL_USBHOST_DEVICE_GET_INT_OUT_ENDPOINT_HANDLE Get first interrupt out endpoint
for device interface

VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE Get first isochronous in endpoint

Copyright © 2012 Future Technology Devices International Ltd. 277

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

for device interface

VOS_IOCTL_USBHOST_DEVICE_GET_ISO_OUT_ENDPOINT_HANDLE

Get first isochronous out
endpoint for device interface

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_ENDPOINT_HANDLE Get next endpoint for device
interface

VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO Get endpoint information

VOS_IOCTL_USBHOST_SET_INTERFACE Set interface for device interface

VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT Clear endpoint halt on both the
device and USB Host controller
(also resets data toggle bit for
endpoint)

VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT Clear endpoint halt on USB Host
controller only (does not update
the data toggle bit for the
endpoint)

VOS_IOCTL_USBHOST_DEVICE_SET_HOST_HALT Set USB Host controller endpoint
halt

VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENDPOINT_CARRY Resets endpoint data toggle bit
to DATA0

VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_CARRY Toggles endpoint data toggle bit

VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_TRANSFER Remove all pending incomplete
transactions from an endpoint

VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER Perform a setup transfer to an
endpoint

VOS_IOCTL_USBHOST_HW_GET_FRAME_NUMBER Get host controller current frame
number

Hub IOCTL requests are not commonly used but are available in the USB Host driver.

VOS_IOCTL_USBHUB_HUB_PORT_COUNT Count of ports on the selected
hub

VOS_IOCTL_USBHUB_HUB_STATUS Status of selected hub

VOS_IOCTL_USBHUB_PORT_STATUS Status of port on selected hub

VOS_IOCTL_USBHUB_CLEAR_C_HUB_LOCAL_POWER Clear hub local power state
change

VOS_IOCTL_USBHUB_CLEAR_C_HUB_OVERCURRENT Clear hub overcurrent state
change

VOS_IOCTL_USBHUB_CLEAR_PORT_ENABLE Clear port enable for selected
port on hub

VOS_IOCTL_USBHUB_SET_PORT_SUSPEND Set port suspend for selected
port on hub

VOS_IOCTL_USBHUB_CLEAR_PORT_SUSPEND Clear port suspend for selected
port on hub

VOS_IOCTL_USBHUB_SET_PORT_RESET Set port reset for selected port
on hub

VOS_IOCTL_USBHUB_SET_PORT_POWER Set port power for selected port
on hub

VOS_IOCTL_USBHUB_CLEAR_PORT_POWER Clear port power for selected
port on hub

VOS_IOCTL_USBHUB_CLEAR_C_PORT_CONNECTION Clear port connection state
change for selected port on hub

VOS_IOCTL_USBHUB_CLEAR_C_PORT_ENABLE Clear port enable state change
for selected port on hub

VOS_IOCTL_USBHUB_CLEAR_C_PORT_SUSPEND Clear port suspend state change

Copyright © 2012 Future Technology Devices International Ltd. 278

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

for selected port on hub

VOS_IOCTL_USBHUB_CLEAR_C_PORT_OVERCURRENT Clear port overcurrent state
change for selected port on hub

VOS_IOCTL_USBHUB_CLEAR_C_PORT_RESET Clear port reset state change for
selected port on hub

4.2.1.2.4.1 VOS_IOCTL_USBHOST_GET_CONNECT_STATE

Description

Determines the state of the USB Host controller. This can be unconnected, connected or
enumerated.

This feature is used to detect device connection and wait until enumeration of device is completed.

Parameters

There are no parameters to pass to this function.

Returns

The status of the USB Host controller is returned to an unsigned char which is pointed to by the get
member of the IOCTL structure.

The return value is one of the following values:

PORT_STATE_DISCONNECTED
PORT_STATE_CONNECTED
PORT_STATE_ENUMERATED

Example

unsigned char waitForEnumeration(VOS_HANDLE hUsbHost)

{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned char i;

// wait until enumeration is complete

do

{

vos_delay_msecs(1);

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_CONNECT_STATE;

usbhost_iocb.get = &i;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

} while (i != PORT_STATE_ENUMERATED);

return i;

}

4.2.1.2.4.2 VOS_IOCTL_USBHOST_GET_ENUMERATION_HANDLE

Description

Returns a handle indicating a unique enumeration instance of the USB Host controller. This value will
change whenever the root hub or a downstream hub is enumerated or disconnected.

It is recommended that the value returned should be compared to a previous value to detect
changes.

Each change in the enumeration value may require the application to check the presence of an
existing device or can be used to start a search for a newly detected device.

The extended handle mode VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED is not required to
use this function.

Parameters

There are no parameters to pass to this function.

Copyright © 2012 Future Technology Devices International Ltd. 279

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

The enumeration handle of the USB Host controller is returned to an unsigned short which is pointed
to by the get member of the IOCTL structure.

Example

unsigned char changeInEnumeration(VOS_HANDLE hUsbHost)

{

usbhost_ioctl_cb_t usbhost_iocb;

static unsigned short prev;

unsigned short i;

// wait until enumeration change

do

{

vos_delay_msecs(1);

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_ENUMERATION_HANDLE;

usbhost_iocb.get = &i;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

} while (i == prev);

// keep handle for next call

prev = i;

return i;

}

4.2.1.2.4.3 VOS_IOCTL_USBHOST_ENUMERATE

Description

Forces the USB Host controller to re-enumerate from the root hub or a downstream hub. For the root
hub one of the methods in USB Host Detecting Connections can be used to determine if the re-
enumeration is successful. For downstream hubs then a search for devices connected to the hub is
recommended.

Parameters

An optional hub device is specified in the dif member of the handle union. If it is NULL then the root
hub is assumed.

The index to the port (port number) is passed in the hub_port member of the IOCTL structure if a
specific port on a downstream hub is required to be re-enumerated. Only one port on a hub can be
re-enumerated at a time.

Returns

There are no parameters returned from this function.

Example

// re-enumerate root hub

void reset(VOS_HANDLE hUsb)

{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_ENUMERATE;

usbhost_iocb.handle.dif = NULL;

vos_dev_ioctl(hUsb, &usbhost_iocb);

}

// re-enumerate first port on the first downstream hub

void resethub(VOS_HANDLE hUsb)

{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_device_handle_ex devIf;

usbhost_ioctl_cb_class_t class;

Copyright © 2012 Future Technology Devices International Ltd. 280

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

unsigned char status;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

// find the first hub

usbhost_iocb.handle.dif = NULL;

class.dev_class = USB_CLASS_HUB;

class.dev_subclass = USB_SUBCLASS_ANY;

class.dev_protocol = USB_PROTOCOL_ANY;

usbhost_iocb.set = &class;

usbhost_iocb.get = &devIf;

status = vos_dev_ioctl(hUsb, &usbhost_iocb);

if (status == USBHOST_OK)

{

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_ENUMERATE;

usbhost_iocb.handle.dif = devIf;

// choose the first port on the hub

usbhost_iocb.hub_port = 1;

vos_dev_ioctl(hUsb, &usbhost_iocb);

}

}

4.2.1.2.4.4 VOS_IOCTL_USBHOST_GET_USB_STATE

Description

Returns the state of the USB Bus. This could be operational, suspended, reset or resuming. A further
bit is used to indicate that a change is pending to the state.

Parameters

There are no parameters to pass to this function.

Returns

The USB Bus state can be one of the following values:

USB_STATE_RESET

USB_STATE_OPERATIONAL

USB_STATE_RESUME

USB_STATE_SUSPEND

An additional bit is set if there is a change in progress.

USB_STATE_CHANGE_PENDING

Example

unsigned char getBusState(VOS_HANDLE hUsbHost)

{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned char state;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_USB_STATE;

usbhost_iocb.get = &state;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return state;

}

4.2.1.2.4.5 VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED

Description

Forces the USB Host controller to use extended handle mode. After this call, device and endpoint
handles must be extended types: usbhost_device_handle_ex and usbhost_ep_handle_ex.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 281

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

There are no parameters to pass to this function.

Returns

There is no return value.

Example

VOS_HANDLE openHost(char devHost)

{

VOS_HANDLE hUsbHost;

usbhost_ioctl_cb_t usbhost_iocb;

hUsbHost = vos_dev_open(devHost);

if (hUsbHost)

{

// immediately enable extended handle mode

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

return hUsbHost;

}

4.2.1.2.4.6 VOS_IOCTL_USBHOST_DEVICE_GET_CONFIGURATION

Description

Returns the selected configuration of a device connected to the root hub.

Parameters

The device handle is specified in the dif member of the handle union.

Returns

The currently selected configuration of the device is returned to an unsigned char value which is
pointed to by the get member of the IOCTL structure.

Example

unsigned short getDeviceConfiguration(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifThis)
{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned char i;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_CONFIGURATION;

usbhost_iocb.get = &i;

usbhost_iocb.handle.dif = ifThis;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return i;

}

4.2.1.2.4.7 VOS_IOCTL_USBHOST_DEVICE_SET_CONFIGURATION

Description

Selects a configuration for a device connected to the root hub.

After this call, all device and endpoint handles for the device will be invalid as re-enumeration is
required when a configuration is changed.

If extended handle mode is activated then all accesses to previously found handles will result in an
error. If basic handle mode is in use then all handles for the USB Port must be discarded by the
application. In all cases, all device handles and endpoint handles will be changed so it is necessary
to search for devices and endpoint again.

Copyright © 2012 Future Technology Devices International Ltd. 282

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Note: At present this IOCTL works on the root hub. All downstream hub devices will be re-
enumerated

Parameters

The device handle is specified in the dif member of the handle union.

The new configuration of the device is set by an unsigned char value which is pointed to by the set
member of the IOCTL structure.

Returns

There is no data returned by this IOCTL operation.

Example

void setDeviceConfiguration(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifThis, unsigned char new)
{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_SET_CONFIGURATION;

usbhost_iocb.set = &new;

usbhost_iocb.handle.dif = ifThis;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.8 VOS_IOCTL_USBHOST_DEVICE_GET_COUNT

Description

Returns the number of device interfaces enumerated on the USB bus.

Parameters

There are no parameters to pass to this function.

Returns

The number of interfaces is passed into the variable pointed to by the get member of the IOCTL
function.

Example

unsigned char getNumberDevices(VOS_HANDLE hUsbHost)

{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned char num_dev;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_COUNT;

usbhost_iocb.get = &num_dev;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return num_dev;

}

4.2.1.2.4.9 VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE

Description

Returns a handle to the first or subsequent device interface on a USB bus.

Parameters

To find the first device interface on a bus, pass NULL to the IOCTL operation in the handle.dif
member.

Copyright © 2012 Future Technology Devices International Ltd. 283

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Subsequent device interfaces can be found by passing a handle found with a previous call in the
handle.dif member.

Returns

A handle to a device interface is returned into the variable pointed to by the get member of the
IOCTL function. If the end of the device interface list is found then NULL is returned.

Example

usbhost_ioctl_cb_t hc_iocb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

hc_iocb.handle.dif = NULL;

hc_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost, &hc_iocb);

// find second device interface

hc_iocb.handle.dif = ifDev;

hc_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost, &hc_iocb);

4.2.1.2.4.10
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID

Description

Returns a handle to a device interface which matches a supplied VID and PID.

Parameters

A VID and PID specification is passed to the IOCTL operation in the set member. This can either have
exact VID and PID values or these can match any value using USB_VID_ANY or USB_PID_ANY.

typedef struct _usbhost_ioctl_cb_vid_pid_t {

unsigned short vid;

unsigned short pid;

} usbhost_ioctl_cb_vid_pid_t;

Common values of VID and PID are in the driver header file "usb.h".

Returns

A handle to a device interface is returned into the variable pointed to by the get member of the
IOCTL function. If no matching device interface list is found then NULL is returned.

Example

usbhost_ioctl_cb_t hc_iocb; // ioctl block

usbhost_ioctl_cb_vid_pid_t usbhost_ioctVidPid;

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

// find VID/PID FT232 (or similar)

usbhost_ioctVidPid.vid = USB_VID_FTDI;

usbhost_ioctVidPid.pid = USB_PID_ANY;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID;

usbhost_iocb.handle.dif = NULL;

usbhost_iocb.set = &usbhost_ioctVidPid;

usbhost_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost1, &usbhost_iocb);

Copyright © 2012 Future Technology Devices International Ltd. 284

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.4.11 VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS

Description

Returns a handle to a device interface which matches a supplied USB class, Subclass and protocol.

Parameters

A class, subclass and protocol specification is passed to the IOCTL operation in the set member. This
can either have exact class, subclass and protocols values or these can match any subclass and
protocol using USB_SUBCLASS_ANY or USB_PROTOCOL_ANY.

typedef struct _usbhost_ioctl_cb_class_t {

unsigned char dev_class;

unsigned char dev_subclass;

unsigned char dev_protocol;

} usbhost_ioctl_cb_class_t;

Common values of class, subclass and protocol are in the driver header file "usb.h".

Returns

A handle to a device interface is returned into the variable pointed to by the get member of the
IOCTL function. If no matching device interface list is found then NULL is returned.

Example

usbhost_ioctl_cb_t hc_iocb; // ioctl block

usbhost_ioctl_cb_class_t hc_iocb_class;

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

hc_iocb_class.dev_class = USB_CLASS_IMAGE;

hc_iocb_class.dev_subclass = USB_SUBCLASS_IMAGE_STILLIMAGE;

hc_iocb_class.dev_protocol = USB_PROTOCOL_IMAGE_PIMA;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

usbhost_iocb.handle.dif = NULL;

usbhost_iocb.set = &hc_iocb_class;

usbhost_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost2, &usbhost_iocb);

4.2.1.2.4.12 VOS_IOCTL_USBHOST_DEVICE_GET_VID_PID

Description

Returns the VID and PID of a device interface from a device interface handle.

Parameters

The device to query is passed in the handle.dif member.

Returns

A structure to receive the VID and PID information for a device is passed in the get member of the
IOCTL structure.

typedef struct _usbhost_ioctl_cb_vid_pid_t {

unsigned short vid;

unsigned short pid;

} usbhost_ioctl_cb_vid_pid_t;

Common values of VID and PID are in the driver header file "usb.h".

Example

usbhost_ioctl_cb_t hc_iocb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

Copyright © 2012 Future Technology Devices International Ltd. 285

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

usbhost_ioctl_cb_vid_pid_t hc_iocb_vid_pid;

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

hc_iocb.handle.dif = NULL;

hc_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost, &hc_iocb);

hc_iocb.handle.dif = ifDev;

if (ifDev)

{

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_VID_PID;

hc_iocb.get = &hc_iocb_vid_pid;

vos_dev_ioctl(hUsbHost, &hc_ioctl);

myVid = hc_iocb_vid_pid.vid;

myPid = hc_iocb_vid_pid.pid;

}

4.2.1.2.4.13 VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO

Description

Returns the class, subclass and protocol of a device interface from a device interface handle.

Parameters

The device to query is passed in the handle.dif member.

Returns

A structure to receive the class, subclass and protocol information for a device is passed in the get
member of the IOCTL structure.

typedef struct _usbhost_ioctl_cb_class_t {

unsigned char dev_class;

unsigned char dev_subclass;

unsigned char dev_protocol;

} usbhost_ioctl_cb_class_t;

Common values of class, subclass and protocol are in the driver header file "usb.h".

Example

usbhost_ioctl_cb_t hc_iocb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

usbhost_ioctl_cb_class_t hc_iocb_class;

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

hc_iocb.handle.dif = NULL;

hc_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost, &hc_iocb);

hc_iocb.handle.dif = ifDev;

if (ifDev)

{

hc_ioctl.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO;

hc_ioctl.get = &hc_iocb_class;

vos_dev_ioctl(hUsbHost, &hc_ioctl);

if ((hc_iocb_class.dev_class != USB_CLASS_IMAGE) ||

Copyright © 2012 Future Technology Devices International Ltd. 286

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 (hc_iocb_class.dev_protocol != USB_PROTOCOL_IMAGE_PIMA))

{

return STILLIMAGE_ERROR;

}

}

4.2.1.2.4.14 VOS_IOCTL_USBHOST_DEVICE_GET_DEV_INFO

Description

Returns information about a device interface from a device interface handle.

Parameters

The device to query is passed in the handle.dif member.

Returns

A structure to receive various information about the interface, including device USB device address,
speed and the USB port it is connected to.

typedef struct _usbhost_ioctl_cb_dev_info_t {

unsigned char port_number; // USB Host port number

unsigned char addr; // USB Bus address

unsigned char interface_number; // interface offset in device

unsigned char speed; // zero for full speed, 1 for low speed

unsigned char alt; // alternate setting

} usbhost_ioctl_cb_dev_info_t;

Example

usbhost_ioctl_cb_t hc_iocb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

usbhost_ioctl_cb_dev_info_t ifInfo;

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

hc_iocb.handle.dif = NULL;

hc_iocb.get = &ifDev;

vos_dev_ioctl(hUsbHost, &hc_iocb);

hc_iocb.handle.dif = ifDev;

if (ifDev)

{

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_DEV_INFO;

host_ioctl_cb.get = &ifInfo;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb); // send the ioctl to the device manager

USBaddress = ifInfo.interface_number;

DeviceSpeed = ifInfo.speed;

Location = ifInfo.port_number;

}

4.2.1.2.4.15
VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

Description

Finds the first control endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Copyright © 2012 Future Technology Devices International Ltd. 287

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

A handle to the first control endpoint is returned to the endpoint handle pointed to by the get
member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found control endpoint

}

4.2.1.2.4.16
VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE

Description

Finds the first bulk IN endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Returns

A handle to the first bulk IN endpoint is returned to the endpoint handle pointed to by the get
member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

Copyright © 2012 Future Technology Devices International Ltd. 288

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found bulk IN endpoint

}

4.2.1.2.4.17
VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE

Description

Finds the first bulk OUT endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Returns

A handle to the first bulk OUT endpoint is returned to the endpoint handle pointed to by the get
member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found bulk OUT endpoint

}

4.2.1.2.4.18
VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE

Description

Finds the first interrupt IN endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Returns

A handle to the first interrupt IN endpoint is returned to the endpoint handle pointed to by the get
member of the IOCTL structure.

Example

Copyright © 2012 Future Technology Devices International Ltd. 289

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found interrupt IN endpoint

}

4.2.1.2.4.19
VOS_IOCTL_USBHOST_DEVICE_GET_INT_OUT_ENDPOINT_HANDLE

Description

Finds the first interrupt OUT endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Returns

A handle to the first interrupt OUT endpoint is returned to the endpoint handle pointed to by the get
member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_INT_OUT_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found interrupt OUT endpoint

}

Copyright © 2012 Future Technology Devices International Ltd. 290

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.4.20
VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE

Description

Finds the first isochronous IN endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Returns

A handle to the first isochronous IN endpoint is returned to the endpoint handle pointed to by the
get member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found isochronous IN endpoint

}

4.2.1.2.4.21
VOS_IOCTL_USBHOST_DEVICE_GET_ISO_OUT_ENDPOINT_HANDLE

Description

Finds the first isochronous OUT endpoint for a device interface.

Parameters

The device interface to search is passed in the handle.dif member.

Returns

A handle to the first isochronous OUT endpoint is returned to the endpoint handle pointed to by the
get member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

Copyright © 2012 Future Technology Devices International Ltd. 291

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_ISO_OUT_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found isochronous OUT endpoint

}

4.2.1.2.4.22
VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_ENDPOINT_HANDLE

Description

Finds a subsequent endpoint of the same type for a device interface. A starting endpoint handle
must be found first.

Parameters

A valid endpoint handle is passed in the handle.ep member.

Returns

A handle to the next endpoint of the same type as the starting endpoint is returned to the endpoint
handle pointed to by the get member of the IOCTL structure.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// found first isochronous IN endpoint

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_ENDPOINT_HANDLE;

host_ioctl_cb.handle.ep = epHandle;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

Copyright © 2012 Future Technology Devices International Ltd. 292

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// second isochronous IN endpoint found

}

}

4.2.1.2.4.23 VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO

Description

Returns information about an endpoint from an endpoint handle.

Parameters

The endpoint to query is passed in the handle.ep member.

Returns

A structure to receive various information about the interface, including device USB endpoint number,
speed and the USB port it is connected to.

typedef struct _usbhost_ioctl_cb_ep_info_t {

unsigned char number;

unsigned short max_size;

unsigned char speed;

} usbhost_ioctl_cb_ep_info_t;

The endpoint number (number member) returns the endpoint number and direction bit set. For
example, Endpoint 2 IN will return 0x82, endpoint 1 OUT will return 0x01.

The speed member is set to zero for Full Speed and one for Low Speed.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_ioctl_cb_ep_info_t epInfo; // Structure to store our endpoint data.

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO;

host_ioctl_cb.handle.ep = epHandle;

host_ioctl_cb.get = &epInfo;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

CtrlEndPoint = epInfo.max_size;

}

4.2.1.2.4.24 VOS_IOCTL_USBHOST_SET_INTERFACE

Description

Copyright © 2012 Future Technology Devices International Ltd. 293

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Enables a device interface using a USB Set Interface method.

Parameters

A valid device interface handle is passed in the handle.dif member.

Returns

There is no data returned from the IOCTL operation.

Example

usbhost_ep_handle_ex epHandle = 0; // Handle to our endpoint.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

if (epHandle)

{

// set this interface to be enabled

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_SET_INTERFACE;

host_ioctl_cb.handle.dif = ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

}

4.2.1.2.4.25 VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT

Description

Clears a halt state from an endpoint on a device. This will also clear the halt state from the endpoint
on USB Host controller. The endpoint record on the USB Host controller is reset to match the state of
the device endpoint.

The control endpoint for a device interface and the endpoint which is halted must be specified in the
call to IOCTL operation.

Parameters

A valid control endpoint handle is passed in the handle.ep member. A handle to a halted endpoint is
passed in the set member of the IOCTL structure.

Returns

There is no data returned by this IOCTL operation.

Example

usbhost_ep_handle_ex epHandle = 0;

usbhost_ep_handle_ex epHandleBulkIn = 0; // Handle to our endpoints.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

Copyright © 2012 Future Technology Devices International Ltd. 294

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandle;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandleBulkIn;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT;

host_ioctl_cb.handle.ep = epHandle;

host_ioctl_cb.set = epHandleBulkIn;

// clear halt state on endpoint

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

4.2.1.2.4.26 VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT

Description

Clears a halt state from an endpoint on the USB Host controller. This does not clear the halt state for
the endpoint on a device.

The USB Host controller will halt an endpoint in it's own bus status records if a transaction to that
endpoint results in an error such as a stall, buffer overrun, buffer underrun; or a pid, data toggle or
bit stuffing error.

This error may not actually affect the endpoint on the device so the device itself may not be in a
halted state. Therefore it may be possible to clear the halt state from the USB Host controller to
continue using the endpoint.

The endpoint to be cleared must be specified in the call to IOCTL operation.

Parameters

A valid endpoint handle to the halted endpoint is passed in the handle.ep member.

Returns

There is no data returned by this IOCTL operation.

Example

usbhost_ep_handle_ex epHandleBulkIn = 0; // Handle to our endpoints.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE;

Copyright © 2012 Future Technology Devices International Ltd. 295

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandleBulkIn;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_SET_HOST_HALT;

host_ioctl_cb.handle.ep = epHandleBulkIn;

// set halt state on endpoint

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

vos_delay_msecs(10);

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT;

host_ioctl_cb.handle.ep = epHandleBulkIn;

// clear halt state on endpoint

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

4.2.1.2.4.27 VOS_IOCTL_USBHOST_DEVICE_SET_HOST_HALT

Description

Sets a halt state on an endpoint on the USB Host controller. This does not set the halt state for the
endpoint on a device.

The USB Host controller will halt an endpoint in it's own bus status records if a transaction to that
endpoint results in an error such as a stall, buffer overrun, buffer underrun; or a pid, data toggle or
bit stuffing error. This call will override this and set the halt state.

The endpoint to be set must be specified in the call to IOCTL operation.

Parameters

A valid endpoint handle to the endpoint is passed in the handle.ep member.

Returns

There is no data returned by this IOCTL operation.

Example

See example in VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT.

4.2.1.2.4.28
VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENPOINT_CARRY

Description

Changes the state of the endpoint toggle in the USB Host controller. This is sometimes necessary
when an error has occurred in the USB Host controller but the device believes that it has acted
correctly. A data underrun error is one type of situation where this may occur. This IOCTL will have to
be called before a VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT is used to remove the halt
state from an endpoint.

The endpoint to be cleared must be specified in the call to IOCTL operation.

Parameters

A valid endpoint handle to the halted endpoint is passed in the handle.ep member.

Returns

There is no data returned by this IOCTL operation.

Example

vos_dev_read(hUsb1, (unsigned char *)xfer, sizeof(usbhost_xfer_t), NULL);

Copyright © 2012 Future Technology Devices International Ltd. 296

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

status = xfer->cond_code;

if (status != USBHOST_CC_NOERROR)

{

if (status == USBHOST_CC_STALL)

{

hc_ioctl.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT;

 // control endpoint for device

hc_ioctl.handle.ep = epCtrl;

// endpoint which signalled STALL

hc_ioctl.set = ep;

hc_ioctl.get = NULL;

vos_dev_ioctl(hUsb1, &hc_ioctl);

}

}

else if (status == USBHOST_CC_DATAUNDERRUN)

{

usbhost_ioctl_cb_t hc_ioctl;

// remove the current uncompleted transfer from the endpoint

hc_ioctl.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_TRANSFER;

hc_ioctl.handle.ep = ep;

vos_dev_ioctl(hUsb1, &hc_ioctl);

hc_ioctl.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENDPOINT_CARRY;

vos_dev_ioctl(hUsb1, &hc_ioctl);

hc_ioctl.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT;

vos_dev_ioctl(hUsb1, &hc_ioctl);

}

}

4.2.1.2.4.29 VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENPOINT_CARRY

Description

Resets the state of the endpoint toggle in the USB Host controller to DATA0. This is sometimes
necessary when an error has occurred in a device and the device has reset its data toggle bit but
the USB Host controller has not. This IOCTL will have to be called before a
VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT is used to remove the halt state from an
endpoint.

The endpoint to be cleared must be specified in the call to IOCTL operation.

Parameters

A valid endpoint handle to the endpoint is passed in the handle.ep member.

Returns

There is no data returned by this IOCTL operation.

Example

The format of the call is the same as the example in
VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENDPOINT_CARRY

4.2.1.2.4.30
VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_TRANSFER

Description

Removes all current transfers scheduled for and endpoint on the USB Host controller.

The USB Host controller will halt an endpoint then clear all the transfers scheduled on the endpoint.
Semaphores which trigger when transfers are completed will be signalled.

The endpoint to be set must be specified in the call to IOCTL operation.

Copyright © 2012 Future Technology Devices International Ltd. 297

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

A valid endpoint handle to the endpoint is passed in the handle.ep member.

Returns

There is no data returned by this IOCTL operation.

Example

usbhost_ep_handle_ex epHandleBulkIn = 0; // Handle to our endpoints.

usbhost_ioctl_cb_t host_ioctl_cb; // ioctl block

usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE;

// find first device interface

host_ioctl_cb.handle.dif = NULL;

host_ioctl_cb.get = &ifDev;

vos_dev_ioctl(hUsbHost, host_ioctl_cb);

epHandle = NULL;

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE;

host_ioctl_cb.handle.dif = ifDev;

host_ioctl_cb.get = &epHandleBulkIn;

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

host_ioctl_cb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_TRANSFER;

host_ioctl_cb.handle.ep = epHandleBulkIn;

// clear any transfers active on the endpoint

vos_dev_ioctl(hUsbHost, &host_ioctl_cb);

4.2.1.2.4.31 VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER

Description

Performs a setup transaction to a control endpoint on a device interface. A device request descriptor
is passed as the SETUP phase of the transaction. This can be followed by a data phase if required.
Finally an ACK phase will be performed.

Note: SETUP transactions to control endpoints cannot use the vos_dev_read() and vos_dev_write()
methods.

Parameters

A USB device request descriptor is passed to the IOCTL operation in the set member of the IOCTL
structure. The structure and definitions for the members of the structure can be found in the 'usb.h'
driver header file.

typedef struct _usb_deviceRequest_t

{

// D7: Data transfer direction

// 0 = Host-to-device

// 1 = Device-to-host

// D6...5: Type

// 0 = Standard

// 1 = Class

// 2 = Vendor

// 3 = Reserved

// D4...0: Recipient

// 0 = Device

// 1 = Interface

// 2 = Endpoint

// 3 = Other

Copyright © 2012 Future Technology Devices International Ltd. 298

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

unsigned char bmRequestType;

// Table 9-4.

unsigned char bRequest;

unsigned short wValue;

unsigned short wIndex;

unsigned short wLength;

} usb_deviceRequest_t;

The control endpoint handle which will receive the SETUP request is passed in the handle.ep
member.

If a data phase is required then the data to be sent or received is placed in the buffer pointed to by
the get member of the IOCTL structure. This must be provided if the wLength member of the device
request descriptor is non-zero.

When sending data to the device in 'host to device' direction, it must contain the wLength bytes of
data to be transmitted. The buffer must be large enough to receive wLength bytes from the device
when the direction is 'device to host'.

Returns

If a 'device to host' request is performed then the returned data is placed in the buffer pointed to by
the get member of the IOCTL structure.

For 'device to host' transfers, the actual amount of data returned by the transfer is written to the
wLength member of the device request descriptor.

Example

// perform a getPortStatus standard request on a printer

// receive one byte of data from the printer in the variable

// printerStatus after the call.

char getPrinterStatus(usbhost_ep_handle_ex ep)

{

usb_deviceRequest_t desc_dev;

usbhost_ioctl_cb_t hc_ioctl;

char printerStatus;

desc_dev.bmRequestType = USB_BMREQUESTTYPE_DEV_TO_HOST

 | USB_BMREQUESTTYPE_CLASS

 | USB_BMREQUESTTYPE_INTERFACE;

desc_dev.bRequest = GET_PORT_STATUS;

desc_dev.wValue = 0;

desc_dev.wIndex = 0;

desc_dev.wLength = 1; // Sends back 1 byte in the data phase.

hc_ioctl.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER;

hc_ioctl.handle.ep = ep;

hc_ioctl.set = &desc_dev;

hc_ioctl.get = &printerStatus; // Status returned from the printer

result = vos_dev_ioctl(hUsb, &hc_ioctl);

if (result != USBHOST_OK)

{

return -1;

}

return printerStatus;

}

4.2.1.2.4.32 VOS_IOCTL_USBHOST_HW_GET_FRAME_NUMBER

Description

Returns the current USB frame number for a USB Host controller.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 299

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

There are no parameters to pass to this function.

Returns

The frame number is passed into the variable pointed to by the set member of the IOCTL function.

Example

unsigned short getFrameNumber(VOS_HANDLE hUsbHost)

{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned short frame;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_HW_GET_FRAME_NUMBER;

usbhost_iocb.set = &frame;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return num_dev;

}

4.2.1.2.4.33 VOS_IOCTL_USBHUB_HUB_PORT_COUNT

Description

Returns the number of ports connected to a hub device. This can be the root hub on the VNC2 or a
downstream hub.

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

Returns

The port count is returned to an unsigned char which is pointed to by the get member of the IOCTL
structure.

Example

unsigned char getHubPortCount(VOS_HANDLE hUsbHost)

{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned char i;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_PORT_COUNT;

usbhost_iocb.get = &i;

// query the root hub

usbhost_iocb.handle.dif = NULL;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return i;

}

4.2.1.2.4.34 VOS_IOCTL_USBHUB_HUB_STATUS

Description

Returns the status of a hub device. This can be the root hub on the VNC2 or a downstream hub. The
status bits returned are described in section 11.24.2.6 of the USB Specification Revision 2.0 "Get Hub
Status".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 300

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The hub status is returned to an unsigned short which is pointed to by the get member of the IOCTL
structure.

Example

unsigned short getHubStatus(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub)
{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned short i;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_HUB_STATUS;

usbhost_iocb.get = &i;

// query a downstream hub

usbhost_iocb.handle.dif = ifHub;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return i;

}

4.2.1.2.4.35 VOS_IOCTL_USBHUB_PORT_STATUS

Description

Returns the status of a port on a hub. This can be the root hub on the VNC2 or a downstream hub.
The status bits returned are described in section 11.24.2.7 of the USB Specification Revision 2.0 "Get
Port Status".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) is passed in the hub_port member of the IOCTL structure.

Returns

The port status is returned to an unsigned char which is pointed to by the get member of the IOCTL
structure.

Example

unsigned short getPortStatus(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub

unsigned char index)

{

usbhost_ioctl_cb_t usbhost_iocb;

unsigned char i;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_PORT_STATUS;

usbhost_iocb.get = &i;

// query a downstream hub

usbhost_iocb.handle.dif = ifHub;

// query port passed as parameter

usbhost_iocb.hub_port = index;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

return i;

}

4.2.1.2.4.36 VOS_IOCTL_USBHUB_CLEAR_C_HUB_LOCAL_POWER

Description

Clears the change bit for the hub local power indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.1 of the USB Specification
Revision 2.0 "Clear Hub Feature".

Copyright © 2012 Future Technology Devices International Ltd. 301

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

Example

void clearHubLocalPowerFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub)
{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_CLEAR_C_HUB_LOCAL_POWER;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port must be zero

usbhost_iocb.hub_port = 0;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.37 VOS_IOCTL_USBHUB_CLEAR_C_HUB_OVERCURRENT

Description

Clears the change bit for the hub overcurrent indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.1 of the USB Specification
Revision 2.0 "Clear Hub Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

Example

void clearHubOvercurrentFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub)
{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_CLEAR_C_HUB_OVERCURRENT;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port must be zero

usbhost_iocb.hub_port = 0;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.38 VOS_IOCTL_USBHUB_CLEAR_PORT_ENABLE

Description

Copyright © 2012 Future Technology Devices International Ltd. 302

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Clears the port enable feature causing the port to be placed in the disabled state. This can be the
root hub on the VNC2 or a downstream hub. The hub features are described in section 11.24.2.2 of
the USB Specification Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure.

Returns

There is no return value from the hub.

Example

void clearPortEnableFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub)
{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_CLEAR_PORT_ENABLE;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port number 1

usbhost_iocb.hub_port = 1;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.39 VOS_IOCTL_USBHUB_SET_PORT_SUSPEND

Description

Sets the port suspend feature causing the port to be placed in the suspend state. This can be the
root hub on the VNC2 or a downstream hub. The hub features are described in section 11.24.2.13 of
the USB Specification Revision 2.0 "Set Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure.

Returns

There is no return value from the hub.

Example

void setPortSuspendFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub,
unsigned char index)

{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_SET_PORT_SUSPEND;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port number passed

usbhost_iocb.hub_port = index;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

Copyright © 2012 Future Technology Devices International Ltd. 303

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.4.40 VOS_IOCTL_USBHUB_CLEAR_PORT_SUSPEND

Description

Clears the port suspend feature causing the port to resume if in the suspend state. This can be the
root hub on the VNC2 or a downstream hub. The hub features are described in section 11.24.2.2 of
the USB Specification Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure.

Returns

There is no return value from the hub.

Example

void clearPortSuspendFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub)
{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_CLEAR_PORT_SUSPEND;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port number 2

usbhost_iocb.hub_port = 2;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.41 VOS_IOCTL_USBHUB_SET_PORT_RESET

Description

Sets the port reset feature causing the port to be placed in the reset state. This can be the root hub
on the VNC2 or a downstream hub. The hub features are described in section 11.24.2.13 of the USB
Specification Revision 2.0 "Set Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure.

Returns

There is no return value from the hub.

Example

void setPortResetFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub,
unsigned char index)

{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_SET_PORT_RESET;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port number passed

usbhost_iocb.hub_port = index;

Copyright © 2012 Future Technology Devices International Ltd. 304

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.42 VOS_IOCTL_USBHUB_SET_PORT_POWER

Description

Sets the port power feature causing the port to be powered if this functionality is supported by the
hub. This can be the root hub on the VNC2 or a downstream hub. The hub features are described in
section 11.24.2.13 of the USB Specification Revision 2.0 "Set Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure.

Returns

There is no return value from the hub.

Example

void setPortPowerFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub,
unsigned char index)

{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_SET_PORT_POWER;

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port number passed

usbhost_iocb.hub_port = index;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.43 VOS_IOCTL_USBHUB_CLEAR_PORT_POWER

Description

Clears the port power feature causing the port to remove power to a device depending on the
functionality of the hub. This can be the root hub on the VNC2 or a downstream hub. The hub
features are described in section 11.24.2.2 of the USB Specification Revision 2.0 "Clear Port
Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure.

Returns

There is no return value from the hub.

Example

void clearPortPowerFeature(VOS_HANDLE hUsbHost,

usbhost_device_handle_ex ifHub)
{

usbhost_ioctl_cb_t usbhost_iocb;

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHUB_CLEAR_PORT_POWER;

Copyright © 2012 Future Technology Devices International Ltd. 305

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// clear a downstream hub

usbhost_iocb.handle.dif = ifHub;

// clear port number 3

usbhost_iocb.hub_port = 3;

vos_dev_ioctl(hUsbHost, &usbhost_iocb);

}

4.2.1.2.4.44 VOS_IOCTL_USBHUB_CLEAR_C_PORT_CONNECTION

Description

Clears the change bit for the port connection indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.2 of the USB Specification
Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

4.2.1.2.4.45 VOS_IOCTL_USBHUB_CLEAR_C_PORT_ENABLE

Description

Clears the change bit for the port enable indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.2 of the USB Specification
Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

4.2.1.2.4.46 VOS_IOCTL_USBHUB_CLEAR_C_PORT_SUSPEND

Description

Clears the change bit for the port suspend indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.2 of the USB Specification
Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

Copyright © 2012 Future Technology Devices International Ltd. 306

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.2.4.47 VOS_IOCTL_USBHUB_CLEAR_C_PORT_OVERCURRENT

Description

Clears the change bit for the port overcurrent indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.2 of the USB Specification
Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

4.2.1.2.4.48 VOS_IOCTL_USBHUB_CLEAR_C_PORT_RESET

Description

Clears the change bit for the port reset indicator. This can be the root hub on the VNC2 or a
downstream hub. The hub features are described in section 11.24.2.2 of the USB Specification
Revision 2.0 "Clear Port Feature".

Parameters

The hub device is specified in the dif member of the handle union. If it is NULL then the root hub is
assumed.

The index to the port (port number) passed in the hub_port member of the IOCTL structure must be
zero.

Returns

There is no return value from the hub.

4.2.1.2.5 usbhost_init()

Syntax

unsigned char usbhost_init (

unsigned char devNum_port_1,

unsigned char devNum_port_2,

usbhost_context_t *context

);

Description

Initialise the USB Host driver and registers the driver with the Device Manager. There are two USB
Host ports, both are controlled from a single instance of the driver.

Three threads are created to manage the USB Host controller. Memory is allocated for these threads
from the heap. The size of the memory allocated is defined in the "USBHost.h" file as:

USBHOST_MEMORY_REQUIRED

There is also a memory requirement for device information storage depending on the number of
interfaces, endpoints and the number of concurrent transfers expected. This is described later in this
topic.

The threads are started automatically when the scheduler is started.

One thread manages the root hub, another notifies application of the completion of transactions and
the third will monitor downstream hub statuses for changes which require action.

Copyright © 2012 Future Technology Devices International Ltd. 307

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

devNum_port_1

The device number to use when registering the USB Port 1 with the Device Manager is
passed in the devNum_port_1 parameter. If the USB Port 1 device is not to be configured
then this parameter should be -1.

devNum_port_2

The device number to use when registering the USB Port 2 device with the Device Manager
is passed in the devNum_port_2 parameter. If the USB Port 2 device is not to be configured
then this parameter should be -1.

context

The last parameter, context, is used to specify a number of interfaces available to be
configured on both USB controllers. It can also specify the number of endpoints to be
configured, and the number of concurrent general and isochronous transfers allowed. If this
is NULL then default values are used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The context parameter must be of the form of the structure defined below:

typedef struct _usbhost_context_t {

unsigned char if_count;

unsigned char ep_count;

unsigned char xfer_count;

unsigned char iso_xfer_count;

} usbhost_context_t;

If any of the parameters are set to zero or the context pointer is NULL then a default value is used
for that parameter. The allocations are shared between the two USB Host controllers and sizes
should be set accordingly. The parameters are explained as follows:

if_count

Once the number of interfaces set in this parameter is reached then further devices will not
be enumerated. A default value of 4 will be used as the maximum number of interfaces
available if this parameter is set to zero.

ep_count

The number of endpoints to be reserved for use by all interfaces. This is in addition to a
control endpoint for each interface which is automatically allocated. If zero, the default is
calculated as the number of interfaces multiplied by 2. This will be sufficient for one IN and
one OUT endpoint per interface.

xfer_count

This is the number of concurrent transactions on non-isochronous endpoints (control, bulk
and interrupt) expected. If it is set to zero then the default of 2 will be used.

iso_xfer_count

This is the number of concurrent transactions on isochronous endpoints expected. If it is set
to zero then the default of 2 will be used.

The following formula will establish the amount of memory required for a given configuration:

total = (if_count * 37) + (ep_count * 24) + (xfer_count * 10) + (iso_xfer_count * 28)

4.2.1.3 USB Slave Driver

The USB Slave driver consists of one driver instance which can control both USB slave ports on the
VNC2.

The USB Slave driver maintains a context for each configured USB port and presents an endpoint-
based interface to the application. Requests to an endpoint must be routed through the correct
driver handle to the appropriate USB Port.

Copyright © 2012 Future Technology Devices International Ltd. 308

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The usbslave_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

Driver Hierarchy

USB Slave Driver hierarchy:

USBSlave Driver

VOS Kernel

USB Slave Hardware

Library Files

USBSlave.a

Header Files

USBSlave.h

4.2.1.3.1 USB Slave Concepts

Configuration

The driver can be configured to control either USB Port 1, USB Port 2 or both USB Ports. A unique
VOS_DEVICE handle and usbslave_ep_handle_t handle is required for each endpoint. If a port is
configured for use by the USB Host then it cannot be used by the USB Slave.

The USB Slave driver can be connected or disconnected to the bus using IOCTL calls. When
disconnected it can be reconfigured to a different function. By default, the device will be
disconnected from the bus at startup.

Driver Handles

The USB Slave driver will require 2 unique device numbers to register both USB Ports with the device
manager. If only one USB Port is configured then only one device number is required.

If both USB Ports are configured then the application will have 2 driver handles when both ports are
opened, one for each USB Port and effectively 2 device drivers active. They should be treated
separately by the application.

Endpoints

The interface to a USB port is based on operations on endpoints. Each device has a control endpoint
and a variable number of IN and OUT endpoints. It is not possible to have IN and OUT endpoints
sharing the same endpoint number.

Endpoints are accessed via a handle of type usbslave_ep_handle_t. The control endpoint (EP0) is
treated as a special case. It handles SETUP packets and supports IN and OUT transactions, and
separate handles are required for EP0 IN and EP0 OUT.

4.2.1.3.1.1 USB Slave Configuration

To start a device with the USB Slave driver, it must be connected to the bus with the
VOS_IOCTL_USBSLAVE_CONNECT call. Before this call, the USB Slave port will be in an unconnected
state on the USB bus.

Once this has completed then a configuration may be setup on the device by assigning functions to
endpoints.

A handle must be obtained prior to accessing an endpoint. The following IOCTLs are used to obtain
a handle to an endpoint of a specific type:

Control Endpoint VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT
_HANDLE

IN Endpoint VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_

Copyright © 2012 Future Technology Devices International Ltd. 309

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

HANDLE
VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_H
ANDLE
VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_H
ANDLE

OUT Endpoint VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOIN
T_HANDLE
VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT
_HANDLE
VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT
_HANDLE

Once a handle is obtained then data can be sent to the endpoint (for an OUT endpoint) and received
from the endpoint (for IN endpoints).

The maximum packet size for an endpoint can be set with the
VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE call, the default is 64 bytes.

The control endpoint is always enabled.

4.2.1.3.1.2 USB Slave Obtaining an Endpoint Handle

4.2.1.3.1.3 USB Slave Enumeration

To support device enumeration, the following algorithm is required. All IOCTLs must be directed to
the Control endpoint.

Wait for a SETUP packet to be received (VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD)

Decode SETUP packet

Handle Standard Device Requests - mandatory requests that must be handled are:

o Set Address, use VOS_IOCTL_USBSLAVE_SET_ADDRESS to change slave address

o Set Configuration

o Get Descriptor for both Device and Configuration descriptors

Handle Class Specific Requests (if any)

Handle Vendor Specific Requests (if any)

If SETUP packet has a data phase read or write further data with
VOS_IOCTL_USBSLAVE_SETUP_TRANSFER

Use VOS_IOCTL_USBSLAVE_SETUP_TRANSFER again to acknowledge transaction with ACK phase

4.2.1.3.1.4 USB Slave Reading and Writing Data

The VOS_IOCTL_USBSLAVE_TRANSFER IOCTL is used for both IN and OUT endpoints. It must not be
used on a Control endpoint.

4.2.1.3.2 USB Slave Return Codes

Status Codes

All calls to the USB Slave driver will return one of the following status codes.

USBSLAVE_OK

No error.

USBSLAVE_INVALID_PARAMETER

A parameter is incorrect or has a mistake.

USBSLAVE_ERROR

An unspecified error occurred.

Copyright © 2012 Future Technology Devices International Ltd. 310

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.3.3 USB Slave IOCTL Calls

Calls to the IOCTL functions for the USB Slave driver take the form:

typedef struct _usbslave_ioctl_cb_t {

uint8 ioctl_code;

uint8 ep;

usbslave_ep_handle_t handle;

// read buffer

void *get;

// write butter

void *set;

union {

struct {

uint8 in_mask;

int16 out_mask;

} set_ep_masks;

struct {

uint8 *buffer;

int16 size;

int16 bytes_transferred;

} setup_or_bulk_transfer;

} request;

} usbslave_ioctl_cb_t;

The following IOCTL request codes are supported by the USB Host driver.

VOS_IOCTL_USBSLAVE_GET_STATE Get the state of the USB Slave device

VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_H
ANDLE

Obtain a handle to the control endpoint

VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE Get a handle to an IN endpoint

VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDL
E

Get a handle to an OUT endpoint

VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS Set the active endpoints for IN and OUT

VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD Wait for a SETUP packet to be received

VOS_IOCTL_USBSLAVE_SETUP_TRANSFER Implement the DATA phase or ACK phase of a
SETUP transfer

VOS_IOCTL_USBSLAVE_SET_ADDRESS Set the address of the slave device

VOS_IOCTL_USBSLAVE_TRANSFER Perform a transfer on an IN or OUT endpoint

VOS_IOCTL_USBSLAVE_ENDPOINT_STALL Stall an endpoint

VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR Clear an endpoint stall

VOS_IOCTL_USBSLAVE_ENDPOINT_STATE Return the halted status of an endpoint

VOS_IOCTL_USBSLAVE_SET_LOW_SPEED Set the USB Slave device to low speed

VOS_IOCTL_USBSLAVE_CONNECT Connect the USB Slave to the bus

VOS_IOCTL_USBSLAVE_DISCONNECT Handle or force a disconnect of the USB Slave
from the USB Host

VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HA
NDLE

Obtain a handle to a bulk IN endpoint

VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_
HANDLE

Obtain a handle to a bulk OUT endpoint

VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HAN
DLE

Obtain a handle to an interrupt IN endpoint

VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HA
NDLE

Obtain a handle to an interrupt OUT endpoint

VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HAN
DLE

Obtain a handle to an isochronous IN endpoint

Copyright © 2012 Future Technology Devices International Ltd. 311

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HA
NDLE

Obtain a handle to an isochronous OUT
endpoint

VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET
_SIZE

Set the maximum USB packet size for an
endpoint

VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND Wait for a USB SUSPEND bus event

VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME Wait for a USB RESUME bus event

VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP Issue a USB remote wakeup request to the
host

4.2.1.3.3.1 VOS_IOCTL_USBSLAVE_GET_STATE

Description

Returns the current state of the USB Slave hardware interface.

Parameters

There are no parameters.

Returns

The current state is returned to the location whose address is passed in the get field of the
usbslave_ioctl_cb_t struct. It can be one of the following values:

usbsStateNotAttached Not attached to a host controller.

usbsStateAttached Attached to a host controller which is not configured.

usbsStatePowered Attached to a host controller which is configured. Configuration of
device can commence.

usbsStateDefault Default mode where configuration sequence has performed a
device reset operation.

usbsStateAddress Address has been assigned by host.

usbsStateConfigured Device is fully configured by host.

usbsStateSuspended Device has been suspended by host.

Example

usbslave_ioctl_cb_t iocb;

unsigned char state;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_STATE;

iocb.get = &state;

vos_dev_ioctl(hA,&iocb);

if (state == usbsStateConfigured)

{

// device in action

}

4.2.1.3.3.2
VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE

Description

Returns a handle for the control endpoint EP0. Separate handles are required for EP0 IN and EP0
OUT. The default wMaxPacketSize for the associated endpoint is 8 bytes.

Parameters

The control endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t struct.

Copyright © 2012 Future Technology Devices International Ltd. 312

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Control endpoint identifiers are defined as follows:

enum {

USBSLAVE_CONTROL_SETUP,

USBSLAVE_CONTROL_OUT,

USBSLAVE_CONTROL_IN

};

Returns

The control endpoint handle is returned to the location whose address is passed in the get field of
the usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep0;

usbslave_ep_handle_t out_ep0;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE;

iocb.ep = USBSLAVE_CONTROL_IN;

iocb.get = &in_ep0;

vos_dev_ioctl(hA,&iocb);

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE;

iocb.ep = USBSLAVE_CONTROL_OUT;

iocb.get = &out_ep0;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.3 VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE

Description

Returns a handle for an IN endpoint.

NOTE: this IOCTL is deprecated, please use one of the following IOCTLs instead:

VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7.

Returns

The IN endpoint handle is returned to the location whose address is passed in the get field of the
usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE;

iocb.ep = 1;

iocb.get = &in_ep;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.4 VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE

Description

Copyright © 2012 Future Technology Devices International Ltd. 313

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns a handle for an OUT endpoint.

NOTE: this IOCTL is deprecated, please use one of the following IOCTLs instead:

VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7.

Returns

The OUT endpoint handle is returned to the location whose address is passed in the get field of the
usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE;

iocb.ep = 2;

iocb.get = &out_ep;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.5 VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS

Description

Sets the endpoint masks for the device. Endpoint masks represent endpoint addresses and types
for the device.

NOTE: this IOCTL is deprecated, please use one of the following IOCTLs instead:

VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Parameters

The endpoint mask for IN endpoints is passed in the set_ep_masks.in_mask field of the request union
in the usbslave_ioctl_cb_t struct.

The endpoint mask for OUT endpoints is passed in the set_ep_masks.out_mask field of the request
union in the usbslave_ioctl_cb_t struct.

Valid endpoint addresses are in the range 1-7. In the mask fields, bits set to 1 correspond to the
addresses of the device’s endpoints.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS;

Copyright © 2012 Future Technology Devices International Ltd. 314

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

iocb.request.set_ep_masks.in_mask = 0x02; // EP1

iocb.request.set_ep_masks.out_mask = 0x04; // EP2

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.6 VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD

Description

Receives a SETUP packet. This call blocks until a SETUP packet is received from the host.

Parameters

The address of the buffer to receive the SETUP packet is passed in the setup_or_bulk_transfer.
buffer field of the request union in the usbslave_ioctl_cb_t struct.

The size the buffer to receive the SETUP packet is passed in the setup_or_bulk_transfer.size field
of the request union in the usbslave_ioctl_cb_t struct. The USB Slave returns a 9-byte SETUP
packet.

Returns

The buffer passed in the setup_or_bulk_transfer.buffer field of the request union in the
usbslave_ioctl_cb_t struct contains the SETUP packet.

Example

usbslave_ioctl_cb_t iocb;

unsigned char setup_buffer[9];

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD;

iocb.request.setup_or_bulk_transfer.buffer = setup_buffer;

iocb.request.setup_or_bulk_transfer.size = 9;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.7 VOS_IOCTL_USBSLAVE_SETUP_TRANSFER

Description

Performs a data phase or ACK phase for a SETUP transaction.

Parameters

The handle of the control endpoint on which the transaction is being performed is passed in the
handle field of the usbslave_ioctl_cb_t struct.

The address of the buffer containing data for the transfer is passed in the setup_or_bulk_transfer.
buffer field of the request union in the usbslave_ioctl_cb_t struct.

The size of the buffer containing data for the transfer is passed in the setup_or_bulk_transfer.size
field of the request union in the usbslave_ioctl_cb_t struct.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SETUP_TRANSFER;

iocb.handle = in_ep0;

iocb.request.setup_or_bulk_transfer.buffer = (void *) 0;

iocb.request.setup_or_bulk_transfer.size = 0;

vos_dev_ioctl(hA,&iocb);

Copyright © 2012 Future Technology Devices International Ltd. 315

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.3.3.8 VOS_IOCTL_USBSLAVE_SET_ADDRESS

Description

Sets the USB address for the device. The USB host assigns the device address during enumeration,
and this IOCTL is used to set the USB slave port hardware to respond to that address. This IOCTL
should be used when processing the USB standard device request, SET_ADDRESS.

Parameters

The address is passed in the set field of the usbslave_ioctl_cb_t struct.

Returns

There is no return value.

Example

void set_address_request(uint8 addr)

{

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ADDRESS;

iocb.set = (void *) addr;

vos_dev_ioctl(hA,&iocb);

}

4.2.1.3.3.9 VOS_IOCTL_USBSLAVE_TRANSFER

Description

Performs a transfer to a non-control endpoint. This IOCTL is used for bulk transfers on both IN and
OUT endpoints. When used on an OUT endpoint, this IOCTL blocks until data is received from the
host. When used on an IN endpoint, this IOCTL blocks until data is sent to the host (in response to
an IN request sent from the host).

Parameters

The handle of the endpoint on which the transaction is being performed is passed in the handle field
of the usbslave_ioctl_cb_t struct.

The address of the buffer for the transfer is passed in the setup_or_bulk_transfer.buffer field of
the request union in the usbslave_ioctl_cb_t struct.

The size of the buffer containing data for the transfer is passed in the setup_or_bulk_transfer.size
field of the request union in the usbslave_ioctl_cb_t struct.

Returns

The number of bytes transferred is returned in the setup_or_bulk_transfer.bytes_transferred field
of the request union in the usbslave_ioctl_cb_t struct.

For bulk transfer requests on OUT endpoints, the data is returned in the buffer whose address was
passed in the setup_or_bulk_transfer.buffer field of the request union in the usbslave_ioctl_cb_t
struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep;

usbslave_ep_handle_t out_ep;

char *str = "hello, world";

uint8 out_buffer[64];

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_TRANSFER;

iocb.handle = in_ep;

iocb.request.setup_or_bulk_transfer.buffer = (unsigned char *) str;

Copyright © 2012 Future Technology Devices International Ltd. 316

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

iocb.request.setup_or_bulk_transfer.size = 12;

vos_dev_ioctl(hA,&iocb);

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_TRANSFER;

iocb.handle = out_ep;

iocb.request.setup_or_bulk_transfer.buffer = out_buffer;

iocb.request.setup_or_bulk_transfer.size = 64;

iocb.request.setup_or_bulk_transfer.bytes_transferred = 0;

vos_dev_ioctl(hA,&iocb);

while (iocb.request.setup_or_bulk_transfer.bytes_transferred) {

// process bytes received from host

}

4.2.1.3.3.10 VOS_IOCTL_USBSLAVE_ENDPOINT_STALL

Description

Force an endpoint to stall on the USB Slave device. An IN, OUT or control endpoint may be stalled.
This may be used on the control endpoint when a device does not support a certain SETUP request
or on other endpoints as required. If an endpoint it halted then it will return a STALL to a request
from the host.

Parameters

The endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t struct.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ENDPOINT_STALL;

iocb.ep = 1;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.11 VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR

Description

Remove a halt state on the USB Slave device. An IN, OUT or control endpoint may be stalled but only
IN and OUT endpoints can be cleared by this IOCTL.

Parameters

The endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t struct.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR;

iocb.ep = 1;

vos_dev_ioctl(hA,&iocb);

Copyright © 2012 Future Technology Devices International Ltd. 317

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.3.3.12 VOS_IOCTL_USBSLAVE_ENDPOINT_STATE

Description

Returns the halt state of an endpoint on the USB Slave device. If an endpoint it halted then it will
return a STALL to a request from the host.

Parameters

The endpoint identifier is passed in the ep field of the usbslave_ioctl_cb_t struct.

Returns

The return value is zero if the endpoint it not halted and non-zero if it is halted.

Example

usbslave_ioctl_cb_t iocb;

char x;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ENDPOINT_STATE;

iocb.ep = 1;

iocb.get = &x;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.13 VOS_IOCTL_USBSLAVE_SET_LOW_SPEED

Description

Sets the USB Slave device to Low Speed. This is non-reversible. This should be performed as soon as
possible after opening the USB Slave device and before host enumeration occurs.

Parameters

There are no parameters.

Returns

There is no return value.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_LOW_SPEED;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.14 VOS_IOCTL_USBSLAVE_CONNECT

Description

This IOCTL is used to present the USB slave device to a USB host for enumeration. The
VOS_IOCTL_USBSLAVE_CONNECT IOCTL is typically called from a USB slave function driver attach
routine. This must be called before the endpoints are configured.

The device can subsequently be removed from the USB bus with a call to the
VOS_IOCTL_USBSLAVE_DISCONNECT IOCTL.

Parameters

The set field of the IOCTL control block should be set to 0.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 318

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

There is no return value.

Example

void present_device_to_host()

{

// call this function to present the device to the USB host for enumeration

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_CONNECT;

iocb.set = (void *) 0;

vos_dev_ioctl(hA,&iocb);

}

4.2.1.3.3.15 VOS_IOCTL_USBSLAVE_DISCONNECT

Description

This IOCTL is used to force a disconnect from a USB host. This will result in the USB slave device not
being visible to the USB host; the device will not be re-enumerated until the
VOS_IOCTL_USBSLAVE_CONNECT IOCTL is called. The VOS_IOCTL_USBSLAVE_DISCONNECT IOCTL
is typically called from a USB slave function driver detach routine.

In order to detect a physical disconnect for a USB host, a GPIO line must be used. The GPIO may be
polled or use an interrupt. This IOCTL should not be necessary when a physical disconnect has
occurred; the USB slave and the attached function driver should handle the re-enumeration process.

Parameters

The set field of the IOCTL control block should be set to 0.

Returns

There is no return value.

Example

void force_disconnect()

{

// call this function to disconnect from the USB host

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_DISCONNECT;

iocb.set = (void *) 0;

vos_dev_ioctl(hA,&iocb);

}

4.2.1.3.3.16
VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE

Description

Returns a handle for a bulk IN endpoint. The default wMaxPacketSize for the associated endpoint is
64 bytes.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7. The endpoint address must be used only once, it is not possible to
obtain handles to both an IN and an OUT endpoint the same address.

Returns

The bulk IN endpoint handle is returned to the location whose address is passed in the get field of
the usbslave_ioctl_cb_t struct.

Copyright © 2012 Future Technology Devices International Ltd. 319

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE;

iocb.ep = 1;

iocb.get = &in_ep;

vos_dev_ioctl(hA,&iocb);

// explicitly set endpoint wMaxPacketSize

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE;

iocb.handle = in_ep;

iocb.request.ep_max_packet_size = USBSLAVE_MAX_PACKET_SIZE_64;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.17
VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE

Description

Returns a handle for a bulk OUT endpoint. The default wMaxPacketSize for the associated endpoint
is 8 bytes.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7. The endpoint address must be used only once, it is not possible to
obtain handles to both an IN and an OUT endpoint the same address.

Returns

The bulk OUT endpoint handle is returned to the location whose address is passed in the get field of
the usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE;

iocb.ep = 2;

iocb.get = &out_ep;

vos_dev_ioctl(hA,&iocb);

// explicitly set endpoint wMaxPacketSize

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE;

iocb.handle = out_ep;

iocb.request.ep_max_packet_size = USBSLAVE_MAX_PACKET_SIZE_64;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.18 VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE

Description

Returns a handle for an interrupt IN endpoint. The default wMaxPacketSize for the associated
endpoint is 64 bytes.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7. The endpoint address must be used only once, it is not possible to
obtain handles to both an IN and an OUT endpoint the same address.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 320

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The interrupt IN endpoint handle is returned to the location whose address is passed in the get field
of the usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE;

iocb.ep = 1;

iocb.get = &in_ep;

vos_dev_ioctl(hA,&iocb);

// explicitly set endpoint wMaxPacketSize

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE;

iocb.handle = in_ep;

iocb.request.ep_max_packet_size = USBSLAVE_MAX_PACKET_SIZE_64;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.19
VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE

Description

Returns a handle for an interrupt OUT endpoint. The default wMaxPacketSize for the associated
endpoint is 64 bytes.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7. The endpoint address must be used only once, it is not possible to
obtain handles to both an IN and an OUT endpoint the same address.

Returns

The interrupt OUT endpoint handle is returned to the location whose address is passed in the get
field of the usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE;

iocb.ep = 2;

iocb.get = &out_ep;

vos_dev_ioctl(hA,&iocb);

// explicitly set endpoint wMaxPacketSize

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE;

iocb.handle = out_ep;

iocb.request.ep_max_packet_size = USBSLAVE_MAX_PACKET_SIZE_64;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.20 VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE

Description

Returns a handle for an isochronous IN endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7. The endpoint address must be used only once, it is not possible to
obtain handles to both an IN and an OUT endpoint the same address.

Copyright © 2012 Future Technology Devices International Ltd. 321

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

The isochronous IN endpoint handle is returned to the location whose address is passed in the get
field of the usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE;

iocb.ep = 1;

iocb.get = &in_ep;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.21
VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE

Description

Returns a handle for an isochronous OUT endpoint.

Parameters

The endpoint address is passed in the ep field of the usbslave_ioctl_cb_t struct. Valid endpoint
addresses are in the range 1-7. The endpoint address must be used only once, it is not possible to
obtain handles to both an IN and an OUT endpoint the same address.

Returns

The isochronous OUT endpoint handle is returned to the location whose address is passed in the get
field of the usbslave_ioctl_cb_t struct.

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t out_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE;

iocb.ep = 2;

iocb.get = &out_ep;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.22
VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE

Description

Set the max packet size for the specified endpoint. The endpoint max packet size can be set to 8,
16, 32 or 64 bytes for a bulk IN, bulk OUT, interrupt IN or interrupt OUT endpoint. Isochronous
endpoints do not use the max packet size field.

Parameters

The handle of the endpoint is passed in the handle field of the usbslave_ioctl_cb_t struct.

The desired maximum packet size is passed in the ep_max_packet_size field of the set union in the
usbslave_ioctl_cb_t struct.

Returns

If an invalid endpoint maximum packet size is requested the function will return
USBSLAVE_INVALID_PARAMETER. Otherwise, USBSLAVE_OK will be returned.

Copyright © 2012 Future Technology Devices International Ltd. 322

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

usbslave_ioctl_cb_t iocb;

usbslave_ep_handle_t in_ep;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE;

iocb.handle = in_ep;

iocb.request.ep_max_packet_size = USBSLAVE_MAX_PACKET_SIZE_64;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.23 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND

Description

This call blocks until a SUSPEND signal is received from the host.

Parameters

There are no parameters.

Returns

USBSLAVE_OK will always be returned.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.24 VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME

Description

This call blocks until a RESUME signal is received from the host.

Parameters

There are no parameters.

Returns

USBSLAVE_OK will always be returned.

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.3.25 VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP

Description

Issues a remote wakeup request to the host. This IOCTL should not be used unless the USB
configuration descriptor indicates that the device is remote wakeup enabled.

Parameters

There are no parameters.

Returns

USBSLAVE_OK will always be returned.

Copyright © 2012 Future Technology Devices International Ltd. 323

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

usbslave_ioctl_cb_t iocb;

iocb.ioctl_code = VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP;

vos_dev_ioctl(hA,&iocb);

4.2.1.3.4 usbslave_init()

Syntax

unsigned char usbslave_init (

unsigned char slavePort,

unsigned char devNum);

Description

Initialise the USB Slave driver and registers the driver with the Device Manager. There are two USB
Slave ports, both are controlled from a single instance of the driver. However, the usbslave_init()
function must be called for each slave port used.

Parameters

slavePort

The slave port to initialise to use the device number passed in devNum. This can be either
USBSLAVE_PORT_A or USBSLAVE_PORT_B.

devNum

The device number to use when registering this USB Slave port with the Device Manager is
passed in the devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The function must be called twice to configure both USB Slave ports. If a port is configured by the
USB Host then it cannot be used for the USB Slave. The USB Slave has no thread memory
requirements.

Please note that the USB Slave device will not be presented to the host controller until a function
driver calls .

4.2.1.4 GPIO Driver

NOTE: The GPIO driver has been superseded by the kernel GPIO Service. Please use the GPIO
kernel service for accessing GPIO.

The GPIO driver documentation is provided for legacy compatibility.

VNC2 provides up to 40 general purpose IO pins (GPIOs). The 40 available signals are arranged in 5
groups of 8 pins referred to as ports. The ports have been assigned identifiers GPIO_PORT_A,
GPIO_PORT_B, GPIO_PORT_C, GPIO_PORT_D and GPIO_PORT_E.

Individual pins on each port can be configured as either input or output by setting a mask. These
can be switched at runtime if required.

The GPIO block also supports configurable interrupts. GPIO_PORT_A supports a port-level interrupt
that will trigger on any pin state change for that port. GPIO_PORT_B allows 4 individually
configurable interrupts to be assigned to any of the GPIO_PORT_B pins. The other GPIO ports do
not support interrupts. Note that in order to use GPIO interrupts, the application must enable the
top-level interrupts with a call to vos_enable_interrupts(VOS_GPIO_INT_IEN).

The GPIO driver supports the vos_dev_read() and vos_dev_write() interfaces for reading values
from and writing values to the GPIO interface.

The gpio_init() function must be called to initialise the driver before the kernel scheduler is started

Copyright © 2012 Future Technology Devices International Ltd. 324

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

with vos_start_scheduler().

Driver Hierarchy

GPIO Driver hierarchy:

GPIO Driver

VOS Kernel

GPIO Hardware

Library Files

GPIO.a

Header Files

GPIO.h

4.2.1.4.1 GPIO Return Codes

Status Codes

All calls to the GPIO driver will return one of the following status codes.

GPIO_OK

The command completed successfully.

GPIO_INVALID_PORT_IDENTIFIER

The requested GPIO port is invalid.

GPIO_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

GPIO_INTERRUPT_NOT_ENABLED

The interrupt to wait on is not enabled

GPIO_ERROR

An unspecified error occurred.

4.2.1.4.2 GPIO Driver Read and Write Operations

Description

The GPIO driver supports read and write operations for each GPIO port via the standard VOS device
manager functions. Since each port is 1 byte wide, the buffer for each read operation is a single
byte.

In the case of write operations, a buffer of many bytes may be written to the GPIO port and they will
be written in succession to the GPIO port to allow bit-banging functionality.

NOTE: these functions are deprecated, please use these kernel service functions instead:

vos_gpio_read_pin()

vos_gpio_read_port()

vos_gpio_read_all()

vos_gpio_write_pin()

vos_gpio_write_port()

vos_gpio_write_all()

Example

unsigned char portDataOut, portDataIn;

unsigned short num_written, num_read;

for (i = 0; i <255; i++) {

Copyright © 2012 Future Technology Devices International Ltd. 325

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

portDataOut = i;

if (vos_dev_write(handle,&portDataOut,1,&num_written) == GPIO_OK){

if (vos_dev_read(handle,&portDataIn,1,&num_read) == GPIO_OK) {

// same value read as written

}

else {

// different value read from that written

}

}

}

4.2.1.4.3 GPIO IOCTL Calls

Calls to the GPIO driver's IOCTL method take the form:

typedef struct _gpio_ioctl_cb_t {

unsigned char ioctl_code;

unsigned char value;

} gpio_ioctl_cb_t;

The following IOCTL request codes are supported by the GPIO driver.

VOS_IOCTL_GPIO_SET_MASK Set pins to either input (0) or output (1)

VOS_IOCTL_GPIO_SET_PROG_INT0_PIN Configure programmable interrupt 0 pin

VOS_IOCTL_GPIO_SET_PROG_INT1_PIN Configure programmable interrupt 1 pin

VOS_IOCTL_GPIO_SET_PROG_INT2_PIN Configure programmable interrupt 2 pin

VOS_IOCTL_GPIO_SET_PROG_INT3_PIN Configure programmable interrupt 3 pin

VOS_IOCTL_GPIO_SET_PROG_INT0_MODE Configure programmable interrupt 0 mode

VOS_IOCTL_GPIO_SET_PROG_INT1_MODE Configure programmable interrupt 1 mode

VOS_IOCTL_GPIO_SET_PROG_INT2_MODE Configure programmable interrupt 2 mode

VOS_IOCTL_GPIO_SET_PROG_INT3_MODE Configure programmable interrupt 3 mode

VOS_IOCTL_GPIO_SET_PORT_INT Configure port interrupt

VOS_IOCTL_GPIO_WAIT_ON_INT0 Wait on interrupt 0 firing

VOS_IOCTL_GPIO_WAIT_ON_INT1 Wait on interrupt 1 firing

VOS_IOCTL_GPIO_WAIT_ON_INT2 Wait on interrupt 2 firing

VOS_IOCTL_GPIO_WAIT_ON_INT3 Wait on interrupt 3 firing

VOS_IOCTL_GPIO_WAIT_ON_PORT_INT Wait on port interrupt firing

4.2.1.4.3.1 VOS_IOCTL_GPIO_SET_MASK

Description

Define the pins on the selected GPIO port which are input (0) and those which are output (1).

NOTE: this IOCTL is deprecated, please use one of these kernel service functions instead:

vos_gpio_set_pin_mode()

vos_gpio_set_port_mode()

vos_gpio_set_all_mode()

Parameters

Set the value member of the GPIO IOCTL control block with the desired bit-mask.

Returns

This IOCTL will always return GPIO_OK.

Copyright © 2012 Future Technology Devices International Ltd. 326

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

/* set pins 0, 1, 2 and 3 to input, all other pins output */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

gpio_iocb.value = 0xF0;

vos_dev_ioctl(hGpioA,&gpio_iocb);

4.2.1.4.3.2 VOS_IOCTL_GPIO_SET_PROG_INT0_PIN

Description

Define the GPIO port signal that is associated with configurable interrupt 0.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the number of the GPIO_PORT_B pin to
be used with configurable interrupt 0. A valid value is a pin number in the range 0 to 7.

Returns

If the parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* associate interrupt 0 with pin 2 of GPIO port B */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT0_PIN;

gpio_iocb.value = GPIO_PIN_2;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.3 VOS_IOCTL_GPIO_SET_PROG_INT1_PIN

Description

Define the GPIO port signal that is associated with configurable interrupt 1.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the number of the GPIO_PORT_B pin to
be used with configurable interrupt 1. A valid value is a pin number in the range 0 to 7.

Returns

If the parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* associate interrupt 1 with pin 5 of GPIO port B */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT1_PIN;

gpio_iocb.value = GPIO_PIN_5;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.4 VOS_IOCTL_GPIO_SET_PROG_INT2_PIN

Description

Define the GPIO port signal that is associated with configurable interrupt 2.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

Copyright © 2012 Future Technology Devices International Ltd. 327

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the number of the GPIO_PORT_B pin to
be used with configurable interrupt 2. A valid value is a pin number in the range 0 to 7.

Returns

If the parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* associate interrupt 2 with pin 1 of GPIO port B */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT2_PIN;

gpio_iocb.value = GPIO_PIN_1;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.5 VOS_IOCTL_GPIO_SET_PROG_INT3_PIN

Description

Define the GPIO port signal that is associated with configurable interrupt 3.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the number of the GPIO_PORT_B pin to
be used with configurable interrupt 3. A valid value is a pin number in the range 0 to 7.

Returns

If the parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* associate interrupt 3 with pin 7 of GPIO port B */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT3_PIN;

gpio_iocb.value = GPIO_PIN_7;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.6 VOS_IOCTL_GPIO_SET_PROG_INT0_MODE

Description

Define the condition that will cause configurable interrupt 0 to trigger.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the condition that will cause configurable
interrupt 0 to trigger. Valid values are:

GPIO_INT_ON_POS_EDGE

GPIO_INT_ON_NEG_EDGE

GPIO_INT_ON_ANY_EDGE

GPIO_INT_ON_HIGH_STATE

GPIO_INT_ON_LOW_STATE

GPIO_INT_DISABLE

Returns

Copyright © 2012 Future Technology Devices International Ltd. 328

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

If the mode parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* generate an interrupt on a positive edge */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT0_MODE;

gpio_iocb.value = GPIO_INT_ON_POS_EDGE;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.7 VOS_IOCTL_GPIO_SET_PROG_INT1_MODE

Description

Define the condition that will cause configurable interrupt 1 to trigger.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the condition that will cause configurable
interrupt 1 to trigger. Valid values are:

GPIO_INT_ON_POS_EDGE

GPIO_INT_ON_NEG_EDGE

GPIO_INT_ON_ANY_EDGE

GPIO_INT_ON_HIGH_STATE

GPIO_INT_ON_LOW_STATE

GPIO_INT_DISABLE

Returns

If the mode parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* generate an interrupt on a high state */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT1_MODE;

gpio_iocb.value = GPIO_INT_ON_HIGH_STATE;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.8 VOS_IOCTL_GPIO_SET_PROG_INT2_MODE

Description

Define the condition that will cause configurable interrupt 2 to trigger.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the condition that will cause configurable
interrupt 2 to trigger. Valid values are:

GPIO_INT_ON_POS_EDGE

GPIO_INT_ON_NEG_EDGE

GPIO_INT_ON_ANY_EDGE

GPIO_INT_ON_HIGH_STATE

GPIO_INT_ON_LOW_STATE

GPIO_INT_DISABLE

Returns

If the mode parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Copyright © 2012 Future Technology Devices International Ltd. 329

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

/* generate an interrupt on any edge */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT2_MODE;

gpio_iocb.value = GPIO_INT_ON_ANY_EDGE;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.9 VOS_IOCTL_GPIO_SET_PROG_INT3_MODE

Description

Define the condition that will cause configurable interrupt 3 to trigger.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block with the condition that will cause configurable
interrupt 3 to trigger. Valid values are:

GPIO_INT_ON_POS_EDGE

GPIO_INT_ON_NEG_EDGE

GPIO_INT_ON_ANY_EDGE

GPIO_INT_ON_HIGH_STATE

GPIO_INT_ON_LOW_STATE

GPIO_INT_DISABLE

Returns

If the mode parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* disable interrupt 3 */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PROG_INT3_MODE;

gpio_iocb.value = GPIO_INT_DISABLE;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.10 VOS_IOCTL_GPIO_WAIT_ON_INT0

Description

Block thread execution until configurable interrupt 0 has triggered. Note that the interrupt is
disabled immediately after signalling and must be re-enabled with the
VOS_IOCTL_GPIO_SET_PROG_INT0_MODE IOCTL to detect further interrupts. Note that for the
interrupt to fire, the application must call vos_enable_interrupts(VOS_GPIO_INT_IEN) before

waiting on the interrupt with this IOCTL.

NOTE: this IOCTL is deprecated, please use one of these kernel service functions instead:

vos_gpio_wait_on_int()

vos_gpio_wait_on_any_int()

vos_gpio_wait_on_all_ints()

Parameters

None.

Returns

If configurable interrupt 0 is not enabled GPIO_INTERRUPT_NOT_ENABLED is returned.

Example

Copyright © 2012 Future Technology Devices International Ltd. 330

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

/* wait for interrupt 0 to fire */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_WAIT_ON_INT0;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.11 VOS_IOCTL_GPIO_WAIT_ON_INT1

Description

Block thread execution until configurable interrupt 1 has triggered. Note that the interrupt is
disabled immediately after signalling and must be re-enabled with the
VOS_IOCTL_GPIO_SET_PROG_INT1_MODE IOCTL to detect further interrupts. Note that for the
interrupt to fire, the application must call vos_enable_interrupts(VOS_GPIO_INT_IEN) before

waiting on the interrupt with this IOCTL.

NOTE: this IOCTL is deprecated, please use one of these kernel service functions instead:

vos_gpio_wait_on_int()

vos_gpio_wait_on_any_int()

vos_gpio_wait_on_all_ints()

Parameters

None.

Returns

If configurable interrupt 1 is not enabled GPIO_INTERRUPT_NOT_ENABLED is returned.

Example

/* wait for interrupt 1 to fire */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_WAIT_ON_INT1;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.12 VOS_IOCTL_GPIO_WAIT_ON_INT2

Description

Block thread execution until configurable interrupt 2 has triggered. Note that the interrupt is
disabled immediately after signalling and must be re-enabled with the
VOS_IOCTL_GPIO_SET_PROG_INT2_MODE IOCTL to detect further interrupts. Note that for the
interrupt to fire, the application must call vos_enable_interrupts(VOS_GPIO_INT_IEN) before

waiting on the interrupt with this IOCTL.

NOTE: this IOCTL is deprecated, please use one of these kernel service functions instead:

vos_gpio_wait_on_int()

vos_gpio_wait_on_any_int()

vos_gpio_wait_on_all_ints()

Parameters

None.

Returns

If configurable interrupt 2 is not enabled GPIO_INTERRUPT_NOT_ENABLED is returned.

Example

/* wait for interrupt 2 to fire */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_WAIT_ON_INT2;

vos_dev_ioctl(hGpioB,&gpio_iocb);

Copyright © 2012 Future Technology Devices International Ltd. 331

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.4.3.13 VOS_IOCTL_GPIO_WAIT_ON_INT3

Description

Block thread execution until configurable interrupt 3 has triggered. Note that the interrupt is
disabled immediately after signalling and must be re-enabled with the
VOS_IOCTL_GPIO_SET_PROG_INT3_MODE IOCTL to detect further interrupts. Note that for the
interrupt to fire, the application must call vos_enable_interrupts(VOS_GPIO_INT_IEN) before

waiting on the interrupt with this IOCTL.

NOTE: this IOCTL is deprecated, please use one of these kernel service functions instead:

vos_gpio_wait_on_int()

vos_gpio_wait_on_any_int()

vos_gpio_wait_on_all_ints()

Parameters

None.

Returns

If configurable interrupt 3 is not enabled GPIO_INTERRUPT_NOT_ENABLED is returned.

Example

/* wait for interrupt 3 to fire */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_WAIT_ON_INT3;

vos_dev_ioctl(hGpioB,&gpio_iocb);

4.2.1.4.3.14 VOS_IOCTL_GPIO_SET_PORT_INT

Description

Enable or disable the port interrupt on GPIO port A. This will detect any change in state on any of
the 8 pins of port A.

NOTE: this IOCTL is deprecated, please use this kernel service function instead:

 vos_gpio_enable_int()

Parameters

Set the value member of the GPIO IOCTL control block to enable or disable the port interrupt on
GPIO port A. Valid values are:

GPIO_PORT_INT_ENABLE

GPIO_PORT_INT_DISABLE

Returns

If the parameter is incorrect then GPIO_INVALID_PARAMETER will be returned.

Example

/* enable interrupts on GPIO port A */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_PORT_INT;

gpio_iocb.value = GPIO_PORT_INT_ENABLE;

vos_dev_ioctl(hGpioA,&gpio_iocb);

4.2.1.4.3.15 VOS_IOCTL_GPIO_WAIT_ON_PORT_INT

Description

Block thread execution until the port interrupt on GPIO port A has triggered. Note that the interrupt
is disabled immediately after signalling and must be re-enabled with the

Copyright © 2012 Future Technology Devices International Ltd. 332

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_GPIO_SET_PORT_INT IOCTL to detect further interrupts. Note that for the interrupt to
fire, the application must call vos_enable_interrupts(VOS_GPIO_INT_IEN) before waiting on the

interrupt with this IOCTL.

NOTE: this IOCTL is deprecated, please use one of these kernel service functions instead:

vos_gpio_wait_on_int()

vos_gpio_wait_on_any_int()

vos_gpio_wait_on_all_ints()

Parameters

None.

Returns

If the GPIO port A interrupt is not enabled GPIO_INTERRUPT_NOT_ENABLED is returned.

Example

/* wait for port interrupt to fire */

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_WAIT_ON_PORT_INT;

vos_dev_ioctl(hGpioA,&gpio_iocb);

4.2.1.4.4 gpio_init()

Syntax

unsigned char gpio_init (

unsigned char devNum,

gpio_context_t* context

);

Description

Initialise the GPIO driver for the port specified in the context and registers the driver with the Device
Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNum parameter.

context

The second parameter, context, is used to specify the GPIO port that is being registered
with the device manager. If the pointer is NULL then the default port of GPIO_PORT_A is
used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The context parameter must be of the form of the structure defined below:

typedef struct _gpio_context_t {

unsigned char port_identifier;

} gpio_context_t;

Valid values for the port_identifier member are GPIO_PORT_A, GPIO_PORT_B, GPIO_PORT_C,
GPIO_PORT_D or GPIO_PORT_E.

Copyright © 2012 Future Technology Devices International Ltd. 333

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.4.5 GPIO Example

// ***

// GPIO example

// This application uses GPIO port A to output a pattern on LEDs.

// The LEDs illuminate 1 at a time shifting from the least

// significant bit to the most significant bit, then back to the least

// significant bit.

// ***

#include "vos.h"

#include "GPIO.h"

#define SIZEOF_tcb 0x400

#define NUMBER_OF_DEVICES 1

/* Device definitions*/

#define VOS_DEV_GPIO 0

// ***

// Device initialisation

// ***

void init_devices(VOS_HANDLE* handle) {

gpio_ioctl_cb_t gpio_iocb;

gpio_context_t gpioCtx;

unsigned char packageType;

if (NUMBER_OF_DEVICES != 0) {

//***

// INITIALISE IOMUX

//***

// route GPIO port A signals as required

packageType = vos_get_package_type();

if (packageType == VINCULUM_II_48_PIN){

// GPIO port A bit 0 to pin 45

vos_iomux_define_output(45,IOMUX_OUT_GPIO_PORT_A_0); //LED7

// GPIO port A bit 1 to pin 46

vos_iomux_define_output(46,IOMUX_OUT_GPIO_PORT_A_1); //LED6

// GPIO port A bit 2 to pin 47

vos_iomux_define_output(47,IOMUX_OUT_GPIO_PORT_A_2); //LED5

// GPIO port A bit 3 to pin 48

vos_iomux_define_output(48,IOMUX_OUT_GPIO_PORT_A_3); //LED4

// GPIO port A bit 7 to pin 44

vos_iomux_define_output(44,IOMUX_OUT_GPIO_PORT_A_7); //LED3

// GPIO port A bit 6 to pin 43

vos_iomux_define_output(43,IOMUX_OUT_GPIO_PORT_A_6); //LED2

// GPIO port A bit 5 to pin 42

vos_iomux_define_output(42,IOMUX_OUT_GPIO_PORT_A_5); //LED1

// GPIO port A bit 4 to pin 41

vos_iomux_define_output(41,IOMUX_OUT_GPIO_PORT_A_4); //LED0

}

else if (packageType == VINCULUM_II_64_PIN) {

// GPIO port A bit 0 to pin 61

vos_iomux_define_output(61,IOMUX_OUT_GPIO_PORT_A_0); //LED7

// GPIO port A bit 1 to pin 62

vos_iomux_define_output(62,IOMUX_OUT_GPIO_PORT_A_1); //LED6

// GPIO port A bit 2 to pin 63

vos_iomux_define_output(63,IOMUX_OUT_GPIO_PORT_A_2); //LED5

// GPIO port A bit 3 to pin 64

vos_iomux_define_output(64,IOMUX_OUT_GPIO_PORT_A_3); //LED4

// GPIO port A bit 7 to pin 60

vos_iomux_define_output(60,IOMUX_OUT_GPIO_PORT_A_7); //LED3

Copyright © 2012 Future Technology Devices International Ltd. 334

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// GPIO port A bit 6 to pin 59

vos_iomux_define_output(59,IOMUX_OUT_GPIO_PORT_A_6); //LED2

// GPIO port A bit 5 to pin 58

vos_iomux_define_output(58,IOMUX_OUT_GPIO_PORT_A_5); //LED1

// GPIO port A bit 4 to pin 57

vos_iomux_define_output(57,IOMUX_OUT_GPIO_PORT_A_4); //LED0

}

//***

// INITIALISE GPIO PARAMETERS - use GPIO port A

//***

gpioCtx.port_identifier = GPIO_PORT_A;

gpio_init(VOS_DEV_GPIO, &gpioCtx);

// open gpio and get a handle

*handle = vos_dev_open(VOS_DEV_GPIO);

// set all pins to output

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

gpio_iocb.value = 0xFF;

vos_dev_ioctl(*handle, &gpio_iocb);

}

}

// ***

// Kitt thread

// ***

void kitt(VOS_HANDLE handle) {

unsigned char portData;

unsigned char value;

unsigned char i;

unsigned char direction;

unsigned short num_written;

direction = 0;

value = 1;

i = 0;

portData = value;

vos_dev_write(handle,&portData,1,&num_written);

while (1) {

vos_delay_msecs(50); // wait for a bit

if (direction == 0) {

// counting up

i++;

if (i == 7)

direction = 1;

}

else {

// counting down

i--;

if (i == 0)

direction = 0;

}

value = (1 << i);

portData = value;

vos_dev_write(handle,&portData,1,&num_written);

}

}

Copyright © 2012 Future Technology Devices International Ltd. 335

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// ***

// Main application

// ***

void main(void) {

VOS_HANDLE hGpio = NULL;

// initialise vos

vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

// initialise devices (APPLICATION SPECIFIC)

init_devices(&hGpio);

// initialise threads

// kitt thread

vos_create_thread(

31,

SIZEOF_tcb,

&kitt,

sizeof(VOS_HANDLE),

(VOS_HANDLE)hGpio

);

vos_start_scheduler();

main_loop:

goto main_loop;

}

4.2.1.5 Timer Driver

VNC2 provides 4 timers. One of these timers is reserved for the VOS kernel task scheduler. The
remaining timers are accessible via the timer driver. The user timers are identified as TIMER_0,
TIMER_1 and TIMER_2.

Timers can be individually configured to have a tick size of 1ms or 1us, count up or count down and
be continuous or single-shot. Each timer can be assigned a different initial/final value and
independently started or stopped.

The tmr_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

Driver Hierarchy

Timer Driver hierarchy:

Timer Driver

VOS Kernel

Timer Hardware

Library Files

Timer.a

Header Files

Timer.h

4.2.1.5.1 Timer Return Codes

Status Codes

Copyright © 2012 Future Technology Devices International Ltd. 336

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

All calls to the timer driver will return one of the following status codes.

TIMER_OK

The command completed successfully.

TIMER_INVALID_IDENTIFIER

The requested timer is invalid.

TIMER_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

TIMER_ERROR

An unspecified error occurred.

4.2.1.5.2 Timer IOCTL Calls

Calls to the timer driver's IOCTL method take the form:

typedef struct _tmr_ioctl_cb_t {

unsigned char ioctl_code;

unsigned short param;

} tmr_ioctl_cb_t;

The following IOCTL request codes are supported by the timer driver.

VOS_IOCTL_TIMER_SET_TICK_SIZE Set the base tick for the timer, 1us or 1ms

VOS_IOCTL_TIMER_SET_COUNT Set initial/final value of timer

VOS_IOCTL_TIMER_SET_DIRECTION Specify if timer counts up or down

VOS_IOCTL_TIMER_SET_MODE Specify single-shot or continuous

VOS_IOCTL_TIMER_START Start the timer

VOS_IOCTL_TIMER_GET_CURRENT_COUNT Retrieve the current timer count

VOS_IOCTL_TIMER_STOP Stop the timer

VOS_IOCTL_TIMER_WAIT_ON_COMPLETE Wait on the timer completing

4.2.1.5.2.1 VOS_IOCTL_TIMER_SET_TICK_SIZE

Description

Specify whether the timer should use 1ms or 1us as the base tick. If using 1ms, the timer is linked
to the shared timer prescaler. The prescaler is automatically configured by the timer driver to have a
value of 1ms for the current system clock frequency.

Parameters

Set the param member of the timer IOCTL control block with the tick value. Valid values are:

TIMER_TICK_US

TIMER_TICK_MS

Returns

If the parameter is incorrect then TIMER_INVALID_PARAMETER will be returned.

Example

/* set timer 0 to use 1ms ticks */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_TICK_SIZE;

tmr_iocb.param = TIMER_TICK_MS;

vos_dev_ioctl(hTimer0,&tmr_iocb);

4.2.1.5.2.2 VOS_IOCTL_TIMER_SET_COUNT

Description

Copyright © 2012 Future Technology Devices International Ltd. 337

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Set the timer value at which the timer should generate an interrupt and roll over to its starting
value.

Parameters

Set the param member of the timer IOCTL control block with the count value. Valid values are
dependent on the system clock frequency and the timer tick size. For example, a VNC2 running at
48MHz which the timer tick specified as TIMER_TICK_US, the maximum count value that can be
supported is 0x0555 - this is determined by the maximum unsigned short value (0xFFFF) divided by
the number of system clock ticks corresponding to 1us. Similarly, when configured for us ticks at
24MHz the maximum count is 0x0AAA and at 12MHz the maximum count is 0x1555.

The maximum permitted count when configured for TIMER_TICK_MS is 0xFFFF.

Returns

If the parameter is incorrect then TIMER_INVALID_PARAMETER will be returned.

Example

/* set timer 2 to have an initial value of 3000ms (previously configured for ms tick) */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_COUNT;

tmr_iocb.param = 0x3000; // 3 seconds

vos_dev_ioctl(hTimer2,&tmr_iocb);

4.2.1.5.2.3 VOS_IOCTL_TIMER_SET_DIRECTION

Description

Specify whether the timer should count up to its count value or count down from it.

Parameters

Set the param member of the timer IOCTL control block with the direction value. Valid values are:

TIMER_COUNT_DOWN

TIMER_COUNT_UP

Returns

If the parameter is incorrect then TIMER_INVALID_PARAMETER will be returned.

Example

/* set timer 0 to count down from its count value */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_DIRECTION;

tmr_iocb.param = TIMER_COUNT_DOWN;

vos_dev_ioctl(hTimer0,&tmr_iocb);

4.2.1.5.2.4 VOS_IOCTL_TIMER_SET_MODE

Description

Specify whether the timer is a single-shot timer or a continuous timer. If in continuous mode, the
timer will generate in interrupt at the end of a cycle, reset itself to its initial value and continue
counting.

Parameters

Set the param member of the timer IOCTL control block with the mode value. Valid values are:

TIMER_MODE_CONTINUOUS

TIMER_MODE_SINGLE_SHOT

Returns

If the parameter is incorrect then TIMER_INVALID_PARAMETER will be returned.

Copyright © 2012 Future Technology Devices International Ltd. 338

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

/* set timer 2 to run in continuous mode */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_MODE;

tmr_iocb.param = TIMER_MODE_CONTINUOUS;

vos_dev_ioctl(hTimer2,&tmr_iocb);

4.2.1.5.2.5 VOS_IOCTL_TIMER_START

Description

Starts a timer. An interrupt will be generated when the timer reaches its final value. If in continuous
mode, the timer will reset its count and continue until stopped with the VOS_IOCTL_TIMER_STOP
IOCTL.

Parameters

None.

Returns

This IOCTL will always return TIMER_OK.

Example

/* start timer 1 */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_START;

vos_dev_ioctl(hTimer1,&tmr_iocb);

4.2.1.5.2.6 VOS_IOCTL_TIMER_GET_CURRENT_COUNT

Description

Retrieves the current value of the timer in units of the base tick. This is either in ms or us depending
on how the timer has been configured.

Parameters

There are no parameters to set.

Returns

The current value of the timer in param.

Example

unsigned short currentCount;

/* get current value of timer 1 */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_GET_CURRENT_COUNT;

vos_dev_ioctl(hTimer2,&tmr_iocb);

currentCount = tmr_iocb.param;

4.2.1.5.2.7 VOS_IOCTL_TIMER_STOP

Description

Stops a timer which was previously started with the VOS_IOCTL_TIMER_START IOCTL.

Parameters

None.

Returns

This IOCTL will always return TIMER_OK.

Copyright © 2012 Future Technology Devices International Ltd. 339

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

/* stop timer 1 */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_STOP;

vos_dev_ioctl(hTimer1,&tmr_iocb);

4.2.1.5.2.8 VOS_IOCTL_TIMER_WAIT_ON_COMPLETE

Description

Block thread execution until the current timer has finished its cycle and signalled an interrupt.

Parameters

None.

Returns

This IOCTL will always return TIMER_OK.

Example

/* wait for timer cycle to complete */

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_WAIT_ON_COMPLETE;

vos_dev_ioctl(hTimer1,&tmr_iocb);

4.2.1.5.3 tmr_init()

Syntax

unsigned char tmr_init (

unsigned char devNum,

tmr_context_t* context

);

Description

Initialise the timer driver for the timer specified in the context and registers the driver with the
Device Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in
the devNum parameter.

context

The second parameter, context, is used to specify the timer that is being registered with
the device manager. If the pointer is NULL then the default timer TIMER_0 is used.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The context parameter must be of the form of the structure defined below:

typedef struct _tmr_context_t {

unsigned char timer_identifier;

} tmr_context_t;

Valid values for the timer_identifier member are TIMER_0, TIMER_1 or TIMER_2.

Copyright © 2012 Future Technology Devices International Ltd. 340

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.5.4 Timer Example

// ***

// Timer example

// This application uses timer 0 with GPIO port A to output a count

// on LEDs. The LEDs display a count of the timer interrupts that

// have occurred since the timer was started.

// ***

/*

** ticktock.c

**

** Copyright © 2009-2011 Future Devices International Limited

**

** C Source file for Vinculum II sample application

** Main module

**

** Author: FTDI

** Project: Vinculum II

** Module: Vinculum II Sample Applications

** Requires: VOS GPIO Timers

** Comments:

**

** History:

** 1 – Initial version

**

*/

#include "vos.h"

#include "Timers.h"

#include "GPIO.h"

#define SIZEOF_tcb 0x400

#define NUMBER_OF_DEVICES 4

/* Device definitions*/

#define TIMER0 0

#define TIMER1 1

#define GPIOA 2

#define GPIOB 3

// ***

// Device initialistation

// ***

void init_devices() {

gpio_context_t gpioCtx;

tmr_context_t tmrCtx;

unsigned char packageType;

if (NUMBER_OF_DEVICES != 0) {

// Add device initialisation calls here

//***

// INITIALISE IOMUX PARAMETERS

//***

// route GPIO port A signals as required

// Gets the package type of the connected device - 32, 48 or 64.

packageType = vos_get_package_type();

if (packageType == VINCULUM_II_32_PIN) {

vos_halt_cpu(); // 32-pin package not supported for the current board setup

}

else if (packageType == VINCULUM_II_48_PIN){

Copyright © 2012 Future Technology Devices International Ltd. 341

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// GPIO port A bit 0 to pin 45

vos_iomux_define_output(45,IOMUX_OUT_GPIO_PORT_A_0); //LED7

// GPIO port A bit 1 to pin 46

vos_iomux_define_output(46,IOMUX_OUT_GPIO_PORT_A_1); //LED6

// GPIO port A bit 2 to pin 47

vos_iomux_define_output(47,IOMUX_OUT_GPIO_PORT_A_2); //LED5

// GPIO port A bit 3 to pin 48

vos_iomux_define_output(48,IOMUX_OUT_GPIO_PORT_A_3); //LED4

// GPIO port A bit 7 to pin 44

vos_iomux_define_output(44,IOMUX_OUT_GPIO_PORT_B_3); //LED3

// GPIO port A bit 6 to pin 43

vos_iomux_define_output(43,IOMUX_OUT_GPIO_PORT_B_2); //LED2

// GPIO port A bit 5 to pin 42

vos_iomux_define_output(42,IOMUX_OUT_GPIO_PORT_B_1); //LED1

// GPIO port A bit 4 to pin 41

vos_iomux_define_output(41,IOMUX_OUT_GPIO_PORT_B_0); //LED0

}

else if (packageType == VINCULUM_II_64_PIN) {

// GPIO port A bit 0 to pin 61

vos_iomux_define_output(61,IOMUX_OUT_GPIO_PORT_A_0); //LED7

// GPIO port A bit 1 to pin 62

vos_iomux_define_output(62,IOMUX_OUT_GPIO_PORT_A_1); //LED6

// GPIO port A bit 2 to pin 63

vos_iomux_define_output(63,IOMUX_OUT_GPIO_PORT_A_2); //LED5

// GPIO port A bit 3 to pin 64

vos_iomux_define_output(64,IOMUX_OUT_GPIO_PORT_A_3); //LED4

// GPIO port A bit 7 to pin 60

vos_iomux_define_output(60,IOMUX_OUT_GPIO_PORT_B_3); //LED3

// GPIO port A bit 6 to pin 59

vos_iomux_define_output(59,IOMUX_OUT_GPIO_PORT_B_2); //LED2

// GPIO port A bit 5 to pin 58

vos_iomux_define_output(58,IOMUX_OUT_GPIO_PORT_B_1); //LED1

// GPIO port A bit 4 to pin 57

vos_iomux_define_output(57,IOMUX_OUT_GPIO_PORT_B_0); //LED0

}

//***

// INITIALISE GPIO PARAMETERS

//***

// Specify the GPIO port that we wish to open, defined within the GPIO header file.

gpioCtx.port_identifier = GPIO_PORT_A;

// Initializes our device with the device manager.

gpio_init(GPIOA, &gpioCtx);

// Specify the GPIO port that we wish to open, defined within the GPIO header file.

gpioCtx.port_identifier = GPIO_PORT_B;

// Initializes our device with the device manager.

gpio_init(GPIOB, &gpioCtx);

// Initializes our device with the device manager.

tmrCtx.timer_identifier = TIMER_0;

tmr_init(TIMER0, &tmrCtx);

tmrCtx.timer_identifier = TIMER_1;

tmr_init(TIMER1, &tmrCtx);

}

}

// ***

// tick thread

// ***

void tick() {

VOS_HANDLE hGpio;

VOS_HANDLE hTimer;

Copyright © 2012 Future Technology Devices International Ltd. 342

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

gpio_ioctl_cb_t gpio_iocb;

tmr_ioctl_cb_t tmr_iocb;

unsigned char portData = 0;

// Open the GPIO and get a handle

hGpio = vos_dev_open(GPIOA);

// Set all pins to output using an ioctl.

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

gpio_iocb.value = 0xFF;

// Send the ioctl to the device manager.

vos_dev_ioctl(hGpio, &gpio_iocb);

// Writes data to the GPIO port.

vos_dev_write(hGpio,&portData,1,NULL);

// Open the GPIO and get a handle

hTimer = vos_dev_open(TIMER0);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_TICK_SIZE;

tmr_iocb.param = TIMER_TICK_MS;

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_COUNT;

tmr_iocb.param = 5000; // 5s

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_DIRECTION;

tmr_iocb.param = TIMER_COUNT_DOWN;

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_MODE;

tmr_iocb.param = TIMER_MODE_CONTINUOUS;

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_START;

vos_dev_ioctl(hTimer, &tmr_iocb);

while (1) {

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_WAIT_ON_COMPLETE;

vos_dev_ioctl(hTimer, &tmr_iocb);

portData++;

// Writes data to the GPIO port.

vos_dev_write(hGpio,&portData,1,NULL);

}

}

// ***

// tock thread

// ***

void tock() {

VOS_HANDLE hGpio;

VOS_HANDLE hTimer;

gpio_ioctl_cb_t gpio_iocb;

tmr_ioctl_cb_t tmr_iocb;

unsigned char portData = 0;

Copyright © 2012 Future Technology Devices International Ltd. 343

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// Open the GPIO and get a handle

hGpio = vos_dev_open(GPIOB);

// Set all pins to output using an ioctl.

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

gpio_iocb.value = 0xFF;

// Send the ioctl to the device manager.

vos_dev_ioctl(hGpio, &gpio_iocb);

// Open the GPIO and get a handle

hTimer = vos_dev_open(TIMER1);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_TICK_SIZE;

tmr_iocb.param = TIMER_TICK_MS;

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_COUNT;

tmr_iocb.param = 1000; // 1s

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_DIRECTION;

tmr_iocb.param = TIMER_COUNT_DOWN;

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_SET_MODE;

tmr_iocb.param = TIMER_MODE_CONTINUOUS;

vos_dev_ioctl(hTimer, &tmr_iocb);

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_START;

vos_dev_ioctl(hTimer, &tmr_iocb);

while (1) {

tmr_iocb.ioctl_code = VOS_IOCTL_TIMER_WAIT_ON_COMPLETE;

vos_dev_ioctl(hTimer, &tmr_iocb);

portData++;

// Writes data to the GPIO port.

vos_dev_write(hGpio,&portData,1,NULL);

}

}

// ***

// Main application

// ***

void main(void) {

// initialise RTOS

vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

// Sets the CPU frequency of the connected device.

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

// initialise devices (APPLICATION SPECIFIC)

init_devices();

// initialise threads

// tick thread

vos_create_thread_ex(

31,

SIZEOF_tcb,

&tick,

"tick",

0

Copyright © 2012 Future Technology Devices International Ltd. 344

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

);

// tock thread

vos_create_thread_ex(

31,

SIZEOF_tcb,

&tock,

"tock",

0

);

// Start Scheduler kicks off the created threads.

vos_start_scheduler();

main_loop:

goto main_loop;

}

4.2.1.6 PWM Driver

VNC2 contains 8 pulse width modulators (PWMs) which can be used to control external devices. The
PWM block consists of 8 comparators and 8 PWM outputs. Each PWM output can be individually set
to toggle its output state based on any combination of the comparators. The comparators compare
a specified value against a counter and when they are equal this will toggle the value of all the PWM
outputs linked to that comparator.

The number of cycles can be set from 1 to 255, or a continuous mode can be set to loop indefinitely.
There is an option to preserve the state from the end of the last cycle or reset to the initial state of
the PWM before starting the next cycle.

The PWM driver does not support read and write operations.

The pwm_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

Driver Hierarchy

PWM Driver hierarchy:

PWM Driver

VOS Kernel

PWM Hardware

Library Files

PWM.a

Header Files

PWM.h

4.2.1.6.1 PWM Return Codes

Status Codes

All calls to the PWM driver will return one of the following status codes.

PWM_OK

The command completed successfully.

PWM_INVALID_IOCTL_CODE

The IOCTL code is invalid for this driver.

PWM_INVALID_COMPARATOR_NUMBER

The specified comparator is outwith the valid range.

PWM_INVALID_PWM_NUMBER

The specified PWM output is outwith the valid range.

Copyright © 2012 Future Technology Devices International Ltd. 345

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

PWM_INTERRUPT_NOT_ENABLED

The requested operation cannot be performed because the interrupt is not enabled.

PWM_IN_CONTINUOUS_MODE

The requested operation cannot be performed because the PWM is in continuous mode.

PWM_ERROR

An unspecified error occurred.

4.2.1.6.2 PWM IOCTL Calls

Calls to the PWM IOCTL interface use the following structure:

typedef struct _pwm_ioctl_cb_t {

unsigned char ioctl_code;

union {

unsigned char pwm_number;

unsigned char comparator_number;

} identifier;

union {

unsigned char prescaler;

unsigned short value;

} count;

union {

unsigned short value;

} comparator;

union {

unsigned char enable_mask;

unsigned char mode;

unsigned char init_state_mask;

unsigned char trigger_mode;

unsigned char restore_state_mask;

} output;

} pwm_ioctl_cb_t;

The following IOCTL request codes are supported by the PWM driver.

VOS_IOCTL_PWM_RESET Reset all PWMs

VOS_IOCTL_PWM_ENABLE_OUTPUT Enable PWM output

VOS_IOCTL_PWM_DISABLE_OUTPUT Disable PWM output

VOS_IOCTL_PWM_SET_TRIGGER_MODE Set trigger mode for all PWMs

VOS_IOCTL_PWM_ENABLE_INTERRUPT Enable interrupt for all PWMs

VOS_IOCTL_PWM_DISABLE_INTERRUPT Disable interrupt for all PWMs

VOS_IOCTL_PWM_SET_PRESCALER_VALUE Set prescaler value for all PWMs

VOS_IOCTL_PWM_SET_COUNTER_VALUE Maximum counter value, used for end of cycle

VOS_IOCTL_PWM_SET_COMPARATOR_VALUE Set a comparator value

VOS_IOCTL_PWM_SET_OUTPUT_TOGGLE_ENAB
LES

Set which comparators the PWM output should
toggle on

VOS_IOCTL_PWM_SET_INITIAL_STATE Set the initial state of the PWMs hi (1) or low (0)

VOS_IOCTL_PWM_RESTORE_INITIAL_STATE Restores the initial state of the PWM on completion
of cycle

VOS_IOCTL_PWM_SET_NUMBER_OF_CYCLES Set the number of times the PWM should repeat the
output

VOS_IOCTL_PWM_WAIT_ON_COMPLETE Wait on the specified number of PWM cycles
completing

4.2.1.6.2.1 VOS_IOCTL_PWM_RESET

Description

Copyright © 2012 Future Technology Devices International Ltd. 346

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Reset the PWM block.

Parameters

None.

Returns

This IOCTL will always return PWM_OK.

Example

/* reset the PWM */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_RESET;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.2.2 VOS_IOCTL_PWM_ENABLE_OUTPUT

Description

Enable the PWM outputs.

Parameters

None.

Returns

This IOCTL will always return PWM_OK.

Example

/* enable the PWM outputs */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_ENABLE_OUTPUT;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.2.3 VOS_IOCTL_PWM_DISABLE_OUTPUT

Description

Disable the PWM outputs.

Parameters

None.

Returns

This IOCTL will always return PWM_OK.

Example

/* disable the PWM outputs */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_DISABLE_OUTPUT;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.2.4 VOS_IOCTL_PWM_SET_TRIGGER_MODE

Description

Specify the optional trigger mode for the PWM to use for enabling output. The trigger is provided
from any GPIO interrupt.

Copyright © 2012 Future Technology Devices International Ltd. 347

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

The trigger type to use. Valid values are:

PWM_TRIGGER_MODE_DISABLED

PWM_TRIGGER_MODE_POSITIVE_EDGE

PWM_TRIGGER_MODE_NEGATIVE_EDGE

PWM_TRIGGER_MODE_ANY_EDGE

Returns

This IOCTL will always return PWM_OK.

Example

/* set the PWM trigger mode for negative edge */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_TRIGGER_MODE;

pwm_iocb.output.trigger_mode = PWM_TRIGGER_MODE_NEGATIVE_EDGE;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.2.5 VOS_IOCTL_PWM_ENABLE_INTERRUPT

Description

Enables an interrupt when the specified PWM operation has completed. If enabled, this allows the
PWM driver to signal an application that the PWM operation has completed via the
VOS_IOCTL_PWM_WAIT_ON_COMPLETE IOCTL call.

Parameters

None.

Returns

This IOCTL will always return PWM_OK.

Example

/* enable the PWM interrupt */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_ENABLE_INTERRUPT;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.2.6 VOS_IOCTL_PWM_DISABLE_INTERRUPT

Description

Disables an interrupt when the specified PWM operation has completed.

Parameters

None.

Returns

This IOCTL will always return PWM_OK.

Example

/* disable the PWM interrupt */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_DISABLE_INTERRUPT;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.2.7 VOS_IOCTL_PWM_SET_PRESCALER_VALUE

Description

Copyright © 2012 Future Technology Devices International Ltd. 348

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Set the prescaler value for the PWM counter.

Parameters

The prescaler value to be used is passed in the prescaler member of count.

Returns

This IOCTL will always return PWM_OK.

Example

/* set the PWM counter prescaler to 0x70 */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_PRESCALER_VALUE;

pwm_iocb.count.prescaler = 0x70;

vos_dev_ioctl(hPwm, &pwm_iocb);

4.2.1.6.2.8 VOS_IOCTL_PWM_SET_COUNTER_VALUE

Description

Set the value for the PWM counter. This specifies the value at which the counter will generate a
PWM interrupt and restart at.

Parameters

The count value to be used is passed in the value member of count.

Returns

This IOCTL will always return PWM_OK.

Example

/* set the PWM counter value to 0x0120 */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_COUNTER_VALUE;

pwm_iocb.count.value = 0x0120;

vos_dev_ioctl(hPwm, &pwm_iocb);

4.2.1.6.2.9 VOS_IOCTL_PWM_SET_COMPARATOR_VALUE

Description

Set the value for a specified PWM comparator. This value is compared with the internal PWM counter
value and when equal, will cause PWM outputs which are linked to the comparator to toggle their
output.

Parameters

The comparator value to be used is passed in the value member of comparator. The comparator to
have its value set should be specified in the comparator_number member of identifier.

Returns

If the comparator_number member of identifier is outwith the permitted range,
PWM_INVALID_COMPARATOR_NUMBER will be returned.

Example

/* set the PWM comparator 0 value to 0x12 */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_COMPARATOR_VALUE;

pwm_iocb.identifier.comparator_number = COMPARATOR_0;

pwm_iocb.comparator.value = 0x012;

vos_dev_ioctl(hPwm, &pwm_iocb);

Copyright © 2012 Future Technology Devices International Ltd. 349

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.1.6.2.10 VOS_IOCTL_PWM_SET_OUTPUT_TOGGLE_ENABLES

Description

Specify which comparators a PWM output should toggle on.

Parameters

A bit-mask of the comparators to be used to toggle the output is passed in the enable_mask
member of output. The PWM output to have its output enable mask set should be specified in the
pwm_number member of identifier.

Returns

If the pwm_number member of identifier is outwith the permitted range,
PWM_INVALID_PWM_NUMBER will be returned.

Example

/* set PWM 2 to toggle its output when comparator 0 or comparator 1

values are equal to the internal counter value */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_OUTPUT_TOGGLE_ENABLES;

pwm_iocb.identifier.pwm_number = PWM_2;

pwm_iocb.output.enable_mask = (MASK_COMPARATOR_0 | MASK_COMPARATOR_1);

vos_dev_ioctl(hPwm, &pwm_iocb);

4.2.1.6.2.11 VOS_IOCTL_PWM_SET_INITIAL_STATE

Description

Control the initial state of the PWM outputs. The initial state can be high (1) or low (0) for each
PWM.

Parameters

A bit-mask of the initial state of each PWM output is passed in the init_state_mask member of
output.

Returns

This IOCTL will always return PWM_OK.

Example

/* set PWM 1 initial state to high, all others to low */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_INITIAL_STATE;

pwm_iocb.output.init_state_mask = 0x02;

vos_dev_ioctl(hPwm, &pwm_iocb);

4.2.1.6.2.12 VOS_IOCTL_PWM_RESTORE_INITIAL_STATE

Description

Control the if a PWM output returns to its initial state when the internal counter expires. A bit value
of 1 will restore the PWM output initial state, a bit value of 0 will maintain the state from when the
counter last expired.

Parameters

A bit-mask of the initial state of each PWM output is passed in the init_state_mask member of
output.

Returns

This IOCTL will always return PWM_OK.

Copyright © 2012 Future Technology Devices International Ltd. 350

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

/* reset PWM 1 and PWM 2 to their initial states when the internal counter expires.

all other PWM outputs will continue from the state they were in when the counter

expired */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_RESTORE_INITIAL_STATE;

pwm_iocb.output.restore_state_mask = (MASK_PWM_1 | MASK_PWM_2);

vos_dev_ioctl(hPwm, &pwm_iocb);

4.2.1.6.2.13 VOS_IOCTL_PWM_SET_NUMBER_OF_CYCLES

Description

Set the number of times that the PWM internal counter should run. Each time, the counter will start
at 0 and count up to the value specified by VOS_IOCTL_PWM_SET_COUNTER_VALUE.

Parameters

The number of cycles to be used is passed in the mode member of output. A value of 0 specifies
continuous output.

Returns

This IOCTL will always return PWM_OK.

Example

/* set the number of PWM cycles to 8. */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_NUMBER_OF_CYCLES;

pwm_iocb.output.mode = 0x08;

vos_dev_ioctl(hPwm, &pwm_iocb);

4.2.1.6.2.14 VOS_IOCTL_PWM_WAIT_ON_COMPLETE

Description

Block thread execution until the current PWM operation is complete.

Parameters

None.

Returns

If the PWM does not have its interrupt enabled PWM_INTERRUPT_NOT_ENABLED is returned. If the PWM
is in continuous mode PWM_IN_CONTINUOUS_MODE is returned.

Example

/* wait for PWM complete interrupt to fire */

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_WAIT_ON_COMPLETE;

vos_dev_ioctl(hPwm,&pwm_iocb);

4.2.1.6.3 pwm_init()

Syntax

unsigned char pwm_init (

unsigned char devNum

);

Description

Initialise the PWM driver and registers the driver with the Device Manager.

Copyright © 2012 Future Technology Devices International Ltd. 351

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

None.

4.2.1.6.4 PWM Example

// ***

// PWM example

// This application uses a single PWM output linked to 2 PWM comparators

// to generate a 50% duty cycle pulse 25 times then sleep for 10 seconds

// repeatedly.

// ***

#include "vos.h"

#include "PWM.h"

#define SIZEOF_tcb 0x400

#define NUMBER_OF_DEVICES 1

/* Device definitions*/

#define VOS_DEV_PWM 0

// ***

// Device initialisation

// ***

void init_devices(void) {

unsigned char packageType;

if (NUMBER_OF_DEVICES != 0) {

//***

// INITIALISE IOMUX PARAMETERS

//***

// route PWM signals as required

packageType = vos_get_package_type();

if (packageType == VINCULUM_II_48_PIN){

// PWM 0 to pin 45

vos_iomux_define_output(45,IOMUX_OUT_PWM_0); //PWM0

}

else if (packageType == VINCULUM_II_64_PIN) {

// PWM 0 to pin 61

vos_iomux_define_output(61,IOMUX_OUT_PWM_0); //PWM0

}

//***

// INITIALISE PWM PARAMETERS

//***

pwm_init(VOS_DEV_PWM);

}

}

Copyright © 2012 Future Technology Devices International Ltd. 352

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// ***

// Pulse thread

// ***

void pulse() {

VOS_HANDLE hPwm;

pwm_ioctl_cb_t pwm_iocb;

// open pwm and get a handle

hPwm = vos_dev_open(VOS_DEV_PWM);

// set counter prescaler value

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_PRESCALER_VALUE;

pwm_iocb.count.prescaler = 0x0A;

vos_dev_ioctl(hPwm, &pwm_iocb);

// ***

// Setting a count value of 0x00A0 with toggles at 0x0010 and 0x0060

// will give a 50% duty cycle

// ***

// set counter value - cycle complete when internal counter reaches this value

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_COUNTER_VALUE;

pwm_iocb.count.value = 0x00A0;

vos_dev_ioctl(hPwm, &pwm_iocb);

// set comparator 0 value - toggle output at a value of 0x0010

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_COMPARATOR_VALUE;

pwm_iocb.identifier.comparator_number = COMPARATOR_0;

pwm_iocb.comparator.value = 0x0010;

vos_dev_ioctl(hPwm, &pwm_iocb);

// set comparator 1 value - toggle output at a value of 0x0060

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_COMPARATOR_VALUE;

pwm_iocb.identifier.comparator_number = COMPARATOR_1;

pwm_iocb.comparator.value = 0x0080;

vos_dev_ioctl(hPwm, &pwm_iocb);

// enable comparators 0 and 1 for PWM 0

// this will cause PWM output 1 to toggle on comparators 0 and 1

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_OUTPUT_TOGGLE_ENABLES;

pwm_iocb.identifier.pwm_number = PWM_0;

pwm_iocb.output.enable_mask = (MASK_COMPARATOR_0 | MASK_COMPARATOR_1);

vos_dev_ioctl(hPwm, &pwm_iocb);

// set initial state - all PWM outputs will be low (0) initially

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_INITIAL_STATE;

pwm_iocb.output.init_state_mask = 0x00;

vos_dev_ioctl(hPwm, &pwm_iocb);

// set restore state - PWM output 0 will return to low state (0)

// at end of cycle

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_RESTORE_INITIAL_STATE;

pwm_iocb.output.restore_state_mask = (MASK_PWM_0);

vos_dev_ioctl(hPwm, &pwm_iocb);

// set mode to 25 cycles

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_SET_NUMBER_OF_CYCLES;

pwm_iocb.output.mode = 0x19;

vos_dev_ioctl(hPwm, &pwm_iocb);

while(1) {

// enable interrupt - this will fire when the specified number of

// cycles is complete

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_ENABLE_INTERRUPT;

vos_dev_ioctl(hPwm, &pwm_iocb);

Copyright © 2012 Future Technology Devices International Ltd. 353

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// enable output

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_ENABLE_OUTPUT;

vos_dev_ioctl(hPwm, &pwm_iocb);

// wait on interrupt

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_WAIT_ON_COMPLETE;

vos_dev_ioctl(hPwm, &pwm_iocb);

// When we get to here, we've completed our 25 cycles of 50% duty cycle

// disable output

pwm_iocb.ioctl_code = VOS_IOCTL_PWM_DISABLE_OUTPUT;

vos_dev_ioctl(hPwm, &pwm_iocb);

// sleep for 10 seconds

vos_delay_msecs(10000);

}

}

// ***

// Main application

// ***

void main(void) {

// initialise rtos

vos_init(VOS_QUANTUM, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

// initialise devices (APPLICATION SPECIFIC)

init_devices();

// initialise threads

// pulse thread

vos_create_thread(

31,

SIZEOF_tcb,

&pulse,

0

);

// enable PWM interrupts

vos_enable_interrupts(VOS_PWM_TOP_INT_IEN);

vos_start_scheduler();

main_loop:

goto main_loop;

}

4.2.2 Layered Drivers

There is no restriction placed on drivers calling other drivers. Furthermore, drivers need not have any
ties to physical hardware devices. These driver are called Layered Drivers because they normally
reside logically between an application and a physical or hardware device driver.

On the VNC2 device, the hardware drivers for the USB Host controller, USB Slave controller and SPI
Master have a selection of layered drivers.

4.2.2.1 Mass Storage Interface

The Mass Storage Interface provides a common interface from file system drivers and APIs to the
underlying hardware. This may be BOMS Class Disk or other devices. All share the same driver
interface.

Copyright © 2012 Future Technology Devices International Ltd. 354

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.1.1 Mass Storage Interface Return Codes

All calls to the MSI compliant drivers will return one of the following MSI (Mass Storage Interface)
status codes.

MSI_OK

The command completed successfully.

MSI_COMMAND_FAILED

The command to the driver failed.

MSI_NOT_FOUND

The interface supplied to an attach IOCTL could not be found or did not have suitable
endpoints. It may also occur if a device was removed unexpectedly.

MSI_INVALID_PARAMETER

A parameter in an IOCTL request outwith the valid range. Or no semaphore was provided
in the transfer structure.

MSI_INVALID_BUFFER

The transfer structure passed to a read or write operation was incorrect.

MSI_NOT_ACCESSED

This is used to ensure that the driver has actually modified the return value of the status in
the transfer structure.

MSI_ERROR

The device to attach to is invalid.

4.2.2.1.2 Mass Storage Interface IOCTL Calls

Calls to MSI driver IOCTL method take the form:

typedef struct _msi_ioctl_cb_t {

unsigned char ioctl_code;

// read buffer

unsigned char *get;

// write butter

unsigned char *set;

} msi_ioctl_cb_t;

The following MSI IOCTL request codes are supported by all devices.

MSI_IOCTL_RESET Resets the device

MSI_IOCTL_GET_MAX_LUN Gets the maximum LUN

MSI_IOCTL_GET_LUN Returns the current LUN selected

MSI_IOCTL_SET_LUN Sets the current LUN

MSI_IOCTL_GET_SECTOR_SIZE Returns the sector size in bytes

MSI_IOCTL_GET_DEV_INFO Gets a structure containing driver dependent device
information

4.2.2.1.3 Mass Storage Interface Read and Write Operations

Syntax

typedef struct _msi_xfer_cb_t {

// sector number

unsigned long sector;

// reference for report completion notification

vos_semaphore_t *s;

// buffer pointer

unsigned char *buf;

// buffer length

unsigned short buf_len;

// transaction total length (not the buffer size when transactions are split)

unsigned short total_len;

// which command/data/status phases to use

Copyright © 2012 Future Technology Devices International Ltd. 355

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

unsigned char do_phases;

// transfer completion status

unsigned char status;

// storage for transport specific transfer structures

// transfer structure for USB Host (BOMS specific)

union

{

// transfer structure for USB Host (BOMS specific)

usbhost_xfer_t usb;

} transport;

} msi_xfer_cb_t;

Description

To read and write to the driver a transfer block is used. This is a structure that is sent to
vos_dev_read() and vos_dev_write() to describe to the driver how to transfer data to device.

It specifies the sector on the disk, the buffer and length of the buffer, the total size of the transfer
and the phases of the operation to perform. Both the size of the buffer and the total size of the
transfer are required since a disk operation can be split into several transactions consisting of the
Command, one or more Data phases and a Status phase.

All disk operations start with a Command phase, have one or more data phases and must terminate
with a Status phase. All data phases must be sized as a multiple of the sector size - this is a
dependent on the driver. Multiple data phases can be performed in separate transactions with buffer
sizes smaller than the total size of the transfer.

To perform a read or write operation, the application must fill in the data in the transfer block and
then send a pointer to the transfer block to the diver using vos_dev_read() or vos_dev_write(). The
driver returns the status of the transaction in the same structure.

In vos_dev_write() the num_to_write parameter is ignored and in vos_dev_read() the num_to_read
parameter is ignored as this information is provided and returned in the transfer block.

Parameters

sector

The sector number to start the operation on the disk. This is also known as the LBA.

s

A semaphore pointer can be specified which is supplied by the application to allow either
the read or write operation to block until completion.

buf

A buffer of multiple of the sector size which is used as the target or source data for the
operation.

buf_len

The actual length of the buffer in buf.

total_len

This is used in the Command phase to tell the disk the size of the transfer which will occur.
The correct total number of bytes must be sent or received by Data phase operations
before a Status phase is performed.

do_phases

This bit map instructs the driver to do one or more of the Command Status and Data
phases. It can also instruct the transport (USB Host driver) to delay starting a USB
transaction or to not block on completion.

MSI_PHASE_COMMAND_BIT

MSI_PHASE_DATA_BIT

MSI_PHASE_STATUS_BIT

status

The status of the operation is returned in this member. It will contain a transport (i.e. USB
Host driver) error in the lower nibble if the bit BOMS_HC_CC_ERROR is set.

transport

A storage area for the BOMS driver to build a transfer descriptor for the USB Host controller.

Copyright © 2012 Future Technology Devices International Ltd. 356

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Remarks

Reading and writing sectors directly without the use of a File System driver or application is not
recommended.

Example

See the example in BOMS Read and Write Example

4.2.2.2 USB Host Class Drivers

The USB Host controller is designed to be flexible in order for layered drivers to add the functionality
required by devices adhering to both standard classes and user defined classes.

The layered drivers for several standard classes and FTDI's own FT232 style of device are provided.

4.2.2.2.1 BOMS Class Driver

The BOMS class driver provides an interface between a file system and a USB disk. The disk is
typically a Flash disk but may also be a hard disk drive.

The interface is described in the document entitled "USB Mass Storage Class Bulk Only Transport"
available from the USB Implementers Forum website: http://usbif.com/

This class is used by the FAT File System class to access disks. It requires the USBHost class
hardware driver.

BOMS is a Mass Storage Interface (MSI) driver and uses the "msi.h" header file for commonality of
IOCTL Calls and Return Codes with other similar drivers.

The boms_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

The BOMS Class Driver driver needs to be attached to a suitable USB device to function using the
BOMS MSI_IOCTL_BOMS_ATTACH IOCTL call specifying an interface on the USB Host Driver.

Driver Hierarchy

BOMS Driver hierarchy:

BOMS Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

BOMS.a

Header Files

USBHost.h

BOMS.h

MSI.h

4.2.2.2.1.1 BOMS Concepts

The BOMS driver needs to be attached to a suitable USB device to function. A USB device must have
USB Class, Subclass and Protocol values for a BOMS class device.

Reading and writing to the BOMS class driver is done through transfer blocks using the read and
write methods of the driver. The transfer block structure tells the driver what information to read and
how to read it. This provides flexibility in structuring requests to the hardware, allowing reading and
writing operations that do not block until completion and streaming operations where the application

http://usbif.com/

Copyright © 2012 Future Technology Devices International Ltd. 357

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

can receive small amounts of data from a larger request.

BOMS devices have the following properties:

LUN - a Logical Unit Number, essentially a way of having multiple logical devices on one BOMS device.
Normally, there will be only one LUN but several may be present. On operations systems these can
be shown as multiple drives.

LBA - Logical Block Address, on a disk this is associated with the unique address for a sector.

Sector - the smallest addressable block of storage. All operations must occur on a complete sector.

Cluster - a grouping of 1, 2, 4 8, 16 or 32 sectors. This can be mapped to the physical storage
characteristics of the device whereas a sector can be a small section of a storage unit on a device.

Do not attempt to write directly to a disk using the BOMS driver unless you know what you are
doing.

4.2.2.2.1.2 BOMS Return Codes

Return codes are described in Mass Storage Interface Return Codes.

4.2.2.2.1.3 BOMS Read and Write Operations

Refer to the Mass Storage Interface Read and Write Operations topic for read and write transactions
on the BOMS driver.

The sector size, and hence the buffer multiple size, for the BOMS driver is 512 bytes or 2048 bytes.

In vos_dev_write() the num_to_write parameter is ignored and in vos_dev_read() the num_to_read
parameter is ignored as this information is provided and returned in the transfer block. However,
the num_written parameter in vos_dev_write() and in vos_dev_read() the num_read parameters are
updated with the total number of bytes transferred.

The msi_xfer_cb_t member status is updated by calls to vos_dev_write() or vos_dev_read(). All
other members are not modified.

4.2.2.2.1.4 BOMS IOCTL Calls

Calls to the BOMS driver's IOCTL method take the form:

typedef struct _msi_ioctl_cb_t {

unsigned char ioctl_code;

// read buffer

unsigned char *get;

// write butter

unsigned char *set;

} msi_ioctl_cb_t;

The following MSI IOCTL request codes are supported by the BOMS driver.

MSI_IOCTL_RESET Resets the BOMS device

MSI_IOCTL_GET_MAX_LUN Gets the maximum LUN

MSI_IOCTL_GET_LUN Returns the current LUN selected

MSI_IOCTL_SET_LUN Sets the current LUN

MSI_IOCTL_GET_SECTOR_SIZE Returns the sector size in bytes

MSI_IOCTL_GET_DEV_INFO Gets a structure containing device information

The BOMS driver also supports the following transport specific IOCTL requests.

MSI_IOCTL_BOMS_ATTACH Attaches the BOMS driver to a USB interface device

MSI_IOCTL_BOMS_DETACH Detaches the BOMS driver

Description

Attaches a BOMS driver to a USB device. The device can be found using the USBHost driver's
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS IOCTL method.

Copyright © 2012 Future Technology Devices International Ltd. 358

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

The device interface handle and USB Host controller handle must be passed in a structure using the
set member of the msi_ioctl_cb_t IOCTL structure.

typedef struct _boms_ioctl_cb_attach_t

{

VOS_HANDLE hc_handle;

usbhost_device_handle_ex ifDev;

} boms_ioctl_cb_attach_t;

Returns

There is no data returned by this call although the return value indicates success or otherwise of the
attach.

MSI_ERROR if the device is not a valid BOMS device - the USB Class, Subclass and Protocol
are checked
MSI_NOT_FOUND if a control, BULK IN or BULK OUT endpoint cannot be found for the device
or the Get Max LUN SETUP command failed

Example

void BOMSFindDevice()

{

 VOS_HANDLE hUsb2, hBoms;

 usbhost_device_handle_ex ifDev2 = 0;

 usbhost_ioctl_cb_t hc_iocb;

 usbhost_ioctl_cb_class hc_iocb_class;

 fat_context fatContext;

 msi_ioctl_cb_t boms_iocb;

 boms_ioctl_cb_attach_t boms_att;

 // find BOMS class device

 hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;

 hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;

 hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

 hc_iocb.handle.dif = NULL;

 hc_iocb.set = &hc_iocb_class;

 hc_iocb.get = &ifDev2;

 if (vos_dev_ioctl(hUsb2, &hc_iocb) != USBHOST_OK)

 {

 // no BOMS class found

 }

 // now we have a device, initialise a BOMS driver for it

 hBoms = vos_dev_open(VOS_DEV_BOMS);

 // boms_attach

 boms_att.hc_handle = hUsb2;

 boms_att.ifDev = ifDev2;

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

 boms_iocb.set = &boms_att;

 boms_iocb.get = NULL;

 if (vos_dev_ioctl(hBoms, &boms_iocb) != MSI_OK)

 {

 // could not attach to device

 }

 // device has been found and opened

Copyright © 2012 Future Technology Devices International Ltd. 359

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 // now detach from the device

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_DETACH;

 vos_dev_ioctl(hBoms, &boms_iocb)

}

Description

Detaches a BOMS driver from a USB device.

Parameters

There are no parameters passed to this IOCTL.

Returns

There is no data returned by this call.

Example

See example in BOMS BOMS MSI_IOCTL_BOMS_ATTACH.

Description

Resets the BOMS device by sending a BOMS Request Reset packet to the device.

Parameters

There are no parameters for this call.

Returns

The return code indicates the status of the USB request sent to the device.

Example

boms_iocb.ioctl_code = MSI_IOCTL_RESET;
vos_dev_ioctl(hBoms,&boms_iocb);

Description

Returns the maximum LUN available on the device.

Parameters

The function takes no input parameters.

Returns

The maximum LUN is returned into an unsigned char variable pointed to by the get member of the
msi_ioctl_cb_t IOCTL structure.

Example

unsigned char max_lun;

boms_iocb.ioctl_code = MSI_IOCTL_GET_MAX_LUN;

boms_iocb.get = &max_lun;

vos_dev_ioctl(hBoms,&boms_iocb);

if (max_lun > 1)

{

// option for multiple LUN disks

}

Copyright © 2012 Future Technology Devices International Ltd. 360

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Gets the current LUN selected for the device.

Parameters

The function takes no input parameters.

Returns

The current LUN is returned into an unsigned char variable pointed to by the get member of the
msi_ioctl_cb_t IOCTL structure.

Example

unsigned char this_lun;

boms_iocb.ioctl_code = MSI_IOCTL_GET_MAX_LUN;

boms_iocb.get = &this_lun;

vos_dev_ioctl(hBoms,&boms_iocb);

if (this_lun != 0)

{

// option for multiple LUN disks

}

Description

Sets the current LUN selected for the device.

Parameters

The current LUN is set using a pointer to an unsigned char variable in the set member of the
msi_ioctl_cb_t IOCTL structure.

Returns

The function returns no output parameters.

Example

unsigned char this_lun;

boms_iocb.ioctl_code = MSI_IOCTL_GET_MAX_LUN;

boms_iocb.get = &this_lun;

vos_dev_ioctl(hBoms,&boms_iocb);

if (this_lun != 0)

{

this_lun = 0;

boms_iocb.ioctl_code = MSI_IOCTL_SET_MAX_LUN;

boms_iocb.set = &this_lun;

vos_dev_ioctl(hBoms,&boms_iocb);

}

Description

Gets the sector size for the device.

Parameters

The function takes no input parameters.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 361

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The sector size returned into an unsigned short variable pointed to by the get member of the
msi_ioctl_cb_t IOCTL structure. This can only be 512 or 2048 bytes.

Example

unsigned short size;

boms_iocb.ioctl_code = MSI_IOCTL_GET_MAX_LUN;

boms_iocb.get = &size;

vos_dev_ioctl(hBoms,&boms_iocb);

if (size != 512)

{

// sector size is not supported

}

Description

Gets device information and populates an application supplied structure. The device information,
although it contains strings, is always of a fixed size.

Parameters

There are no parameters for this call.

Returns

The device information is copied into the structure pointed to by the get member of the
msi_ioctl_cb_t IOCTL structure.

typedef struct _msi_ioctl_cb_info_t

{

// device information

unsigned char vendorId[8];

unsigned char productId[16];

unsigned char rev[4];

unsigned short vid; // BOMS specific

unsigned short pid; // BOMS specific

} msi_ioctl_cb_info_t;

The VID and PID members are BOMS specific. Vendor ID, product ID and rev are fixed length strings
padded with space characters.

Example

void checkDisk(VOS_HANDLE hDisk)

{

msi_ioctl_cb_t disk_iocb;

msi_ioctl_cb_info_t disk_iocb_info;

disk_iocb.ioctl_code = MSI_IOCTL_GET_DEV_INFO;

disk_iocb.get = &disk_iocb_info;

vos_dev_ioctl(hDisk,&disk_iocb);

if (disk_iocb_info.vid == 0x1234)

{

// specific operation for this vendor I

}

}

4.2.2.2.1.5 boms_init()

Syntax

unsigned char boms_init (

unsigned char devNum

Copyright © 2012 Future Technology Devices International Ltd. 362

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

);

Description

Initialise the BOMS driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the BOMS driver with the Device Manager.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

Memory is allocated dynamically for an instance of the BOMS driver when this call is made. It is never
freed by the driver.

4.2.2.2.1.6 BOMS Examples

This example shows how to attach to BOMS device:

void BOMSFindDevice()

{

 VOS_HANDLE hUsb2, hBoms;

 usbhost_device_handle_ex ifDev2 = 0;

 usbhost_ioctl_cb_t hc_iocb;

 usbhost_ioctl_cb_class hc_iocb_class;

 fat_context fatContext;

 msi_ioctl_cb_t boms_iocb;

 boms_ioctl_cb_attach_t boms_att;

 char buff[512];

 // find BOMS class device

 hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;

 hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;

 hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

 hc_iocb.handle.dif = NULL;

 hc_iocb.set = &hc_iocb_class;

 hc_iocb.get = &ifDev2;

 if (vos_dev_ioctl(hUsb2, &hc_iocb) != USBHOST_OK)

 {

 // no BOMS class found

 }

 // now we have a device, initialise a BOMS driver for it

 hBoms = vos_dev_open(VOS_DEV_BOMS);

 // boms_attach

 boms_att.hc_handle = hUsb2;

 boms_att.ifDev = ifDev2;

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

 boms_iocb.set = &boms_att;

 boms_iocb.get = NULL;

 if (vos_dev_ioctl(hBoms, &boms_iocb) != MSI_OK)

 {

Copyright © 2012 Future Technology Devices International Ltd. 363

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 // could not attach to device

 }

 else

 {

 // initialise FAT file system driver to use BOMS device

 // now detach from the device

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_DETACH;

 vos_dev_ioctl(hBoms, &boms_iocb)

 }

}

The following example shows how to read or write a sector (512 bytes) to a flash disk:

VOS_DEVICE hBoms;

unsigned char fat_readSector(unsigned long sector, char *buffer)

{

// transfer buffer

msi_xfer_cb_t xfer;

// completion semaphore

vos_semaphore_t semRead;

unsigned char status;

vos_init_semaphore(&semRead, 0);

xfer.sector = sector;

xfer.buf = buffer;

//TODO: 512 byte sector specific

xfer.total_len = 512;

xfer.buf_len = 512;

xfer.status = MSI_NOT_ACCESSED;

xfer.s = &semRead;

xfer.do_phases = MSI_PHASE_ALL;

status = vos_dev_read(hBoms, (unsigned char *)&xfer, sizeof(msi_xfer_cb_t), NULL);

if (status == MSI_OK)

{

status = FAT_OK;

}

else

{

status |= FAT_MSI_ERROR;

}

return status;

}

unsigned char fat_writeSector(unsigned long sector, char *buffer)

{

// transfer buffer

msi_xfer_cb_t xfer;

// completion semaphore

vos_semaphore_t semRead;

unsigned char status;

vos_init_semaphore(&semRead, 0);

xfer.sector = sector;

xfer.buf = buffer;

//TODO: 512 byte sector specific

xfer.total_len = 512;

xfer.buf_len = 512;

xfer.status = MSI_NOT_ACCESSED;

xfer.s = &semRead;

xfer.do_phases = MSI_PHASE_ALL;

Copyright © 2012 Future Technology Devices International Ltd. 364

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

status = vos_dev_write(hBoms, (unsigned char *)&xfer, sizeof(msi_xfer_cb_t), NULL);

if (status == MSI_OK)

{

status = FAT_OK;

}

else

{

status |= FAT_MSI_ERROR;

}

return status;

}

4.2.2.2.2 Printer Class Driver

A printer class driver will be provided which is layered on top of the USB host driver. Note that not all
USB printers fall within the USB Printer device class.

The usbHostPrinter_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

The USB Host Printer driver needs to be attached to a suitable USB device to function using the
VOS_IOCTL_USBHOSTPRINTER_ATTACH IOCTL call specifying an interface on the USB Host Driver.

Driver Hierarchy

Printer Driver hierarchy:

Printer Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

USBHostPrinter.a

Header Files

USBHost.h

USBHostPrinter.h

4.2.2.2.2.1 Printer Class Return Codes

Status Codes

All calls to the USB Host Printer driver will return one of the following status codes.

USBHOSTPRINTER_OK

The command completed successfully.

USBHOSTPRINTER_INVALID_PARAMETER

An invalid parameter was passed to the driver.

USBHOSTPRINTER_NOT_FOUND

The printer device could not be found.

USBHOSTPRINTER_USBHOST_ERROR

The USB Host driver reported an error when attempting to communicate with the printer.

USBHOSTPRINTER_FATAL_ERROR

An error has occurred that will prevent the driver from functioning properly.

Copyright © 2012 Future Technology Devices International Ltd. 365

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.2.2.2 Printer Class Read and Write Operations

The USB Host Printer driver provides a write function to send print data to the printer.

Since USB Printers are not required to support a bulk IN endpoint, if no bulk IN endpoint is found
during the attach then the write function will return with a status of
USBHOST_PRINTER_NOT_FOUND.

If a bulk IN endpoint is found during attach, the read function may be used to retrieve messages
from the printer if supported.

The read and write functions can also return USBHOSTPRINTER_OK on success or
USBHOSTPRINTER_USBHOST_ERROR if the USB Host has returned an error.

4.2.2.2.2.3 Printer Class IOCTL Calls

Calls to the IOCTL functions for the USB Host Printer driver take the form:

typedef struct _usbHostPrinter_ioctl_t

{

unsigned char ioctl_code;

union {

unsigned char *data;

usbHostPrinter_ioctl_cb_attach_t *att;

} set;

union {

unsigned char *data;

} get;

} usbHostPrinter_ioctl_t;

The following IOCTL request codes are supported by the USB Host Printer driver.

VOS_IOCTL_USBHOSTPRINTER_ATTACH Attach the driver to a USB interface device.

VOS_IOCTL_USBHOSTPRINTER_DETACH Detach the driver to a USB interface device.

VOS_IOCTL_USBHOSTPRINTER_GET_DEVICE_ID Get the printer IEEE 1284 device ID string.

VOS_IOCTL_USBHOSTPRINTER_PORT_STATUS Get the printer status.

VOS_IOCTL_USBHOSTPRINTER_SOFT_RESET Reset the printer.

Description

Attaches the USB Host Printer driver to an interface in the USB Host controller. The host controller
handle is that obtained from vos_dev_open() when the USBHost driver was opened. This function
checks the interface class of the device to ensure it is being attached to a printer class interface.

Parameters

The device interface handle and USB Host controller handle must be passed in a structure using the
set member of the IOCTL structure.

typedef struct _usbHostPrinter_ioctl_cb_attach_t

{

 VOS_HANDLE hc_handle;

 usbhost_device_handle_ex ifDev;

} usbHostPrinter_ioctl_cb_attach_t;

Returns

USBHOSTPRINTER_OK if the attach is successful
USBHOSTPRINTER_NOT_FOUND if the interface is not printer class

Example

See example in USB Host Printer Driver Example.

Copyright © 2012 Future Technology Devices International Ltd. 366

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

This removes the association of the USB Host Printer driver with the currently connected interface.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTPRINTER_OK.

Example

usbPrinter_ioctl.ioctl_code = VOS_IOCTL_USBHOSTPRINTER_DETACH;

vos_dev_ioctl(hUsbPrinter, &usbPrinter_ioctl);

Description

Gets the IEEE 1284 device ID string. This describes the printer and its capabilities.

Parameters

A pointer to an unsigned char is returned in the data member of get.

Returns

If the parameters are incorrect then the return code is USBHOSTPRINTER_INVALID_PARAMETER. An
error from the USB Host driver may be returned.

Example

See example in USB Host Printer Driver Example.

Description

Gets the current printer status. The printer status is a bit mask value with status bits defined in
USBPrinter.h.

Parameters

A pointer to an 8-bit value is returned in the data member of get. This will be a bitmap of the current
printer status.

Returns

If the parameters are incorrect then the return code is USBHOSTPRINTER_INVALID_PARAMETER. An
error from the USB Host driver may be returned.

Example

See example in USB Host Printer Driver Example.

Description

Sends a soft reset class request to the USB printer.

Parameters

There are no parameters for this IOCTL.

Returns

If the parameters are incorrect then the return code is USBHOSTPRINTER_INVALID_PARAMETER. An

Copyright © 2012 Future Technology Devices International Ltd. 367

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

error from the USB Host driver may be returned.

Example

printer_iocb.ioctl_code = VOS_IOCTL_USBHOSTPRINTER_SOFT_RESET;

vos_dev_ioctl(hPrinter, &printer_iocb);

4.2.2.2.2.4 usbHostPrinter_init()

Syntax

unsigned char usbHostPrinter_init(unsigned char devNum)

Description

Initialise the USB Host Printer driver and registers the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The driver can be attached to a printer device once the USB Host enumeration has completed.

4.2.2.2.2.5 USB Host Printer Driver Example

unsigned char i;

unsigned char printerstatus;

unsigned short k = 0;

unsigned short num_written =0;

unsigned int handle;

usbhost_device_handle_ex ifDev = 0;

usbhost_ioctl_cb_t hc_iocb;

usbhost_ioctl_cb_class_t hc_iocb_class;

usbHostPrinter_ioctl_t printer_iocb;

usbHostPrinter_ioctl_cb_attach_t printerAtt;

unsigned char bufstatus;

unsigned char* devCaps = NULL;

hUsb1 = vos_dev_open(VOS_DEV_USB_HOST1);

// Printer setting and writing start here

do

{

 // user ioctl to see if bus available

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_CONNECT_STATE;

 hc_iocb.get = &i;

 vos_dev_ioctl(hUsb1, &hc_iocb);

 if (i == PORT_STATE_ENUMERATED)

 {

 // find Printer class device

 hc_iocb_class.dev_class = USB_CLASS_PRINTER;

 hc_iocb_class.dev_subclass = USB_SUBCLASS_ANY;

 hc_iocb_class.dev_protocol = USB_PROTOCOL_ANY;

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

 hc_iocb.handle.dif = NULL;

 hc_iocb.set = &hc_iocb_class;

 hc_iocb.get = &ifDev;

Copyright © 2012 Future Technology Devices International Ltd. 368

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 if (vos_dev_ioctl(hUsb1, &hc_iocb) == USBHOST_OK)

 {

 hPrinter = vos_dev_open(VOS_DEV_USB_PRINTER);

 printerAtt.hc_handle = hUsb1;

 printerAtt.ifDev = ifDev;

 printer_iocb.ioctl_code = VOS_IOCTL_USBHOSTPRINTER_ATTACH;

 printer_iocb.set.att = &printerAtt;

 printerstatus = vos_dev_ioctl(hPrinter, &printer_iocb);

 if (vos_dev_ioctl(hPrinter, &printer_iocb) == USBHOSTPRINTER_OK)

 {

 // get the device ID and capabilities string

 printer_iocb.ioctl_code = VOS_IOCTL_USBHOSTPRINTER_GET_DEVICE_ID;

 vos_dev_ioctl(hPrinter, &printer_iocb);

 devCaps = printer_iocb.get.data;

 // Get printer's port status

 printer_iocb.ioctl_code = VOS_IOCTL_USBHOSTPRINTER_PORT_STATUS;

 printer_iocb.get.data = &bufstatus;

 if (vos_dev_ioctl(hPrinter, &printer_iocb) == USBHOSTPRINTER_OK)

 while (k == 0)

 {

 // check printer status here

 if (bufstatus & USB_PRINTER_STATUS_PAPER_EMPTY)

 {

 // no paper

 break;

 }

 if (bufstatus & USB_PRINTER_STATUS_NOT_ERROR)

 {

 }

 if (bufstatus & USB_PRINTER_STATUS_SELECT)

 {

 }

 // the first 2 bytes of the device ID are the length

 // the MSB of this is frequently 0, so cannot use

 // strlen on whole string - ignore first 2 bytes

 k = strlen(devCaps + 2);

 // print the device ID string on the printer

 // ignoring the length bytes at the start

 if (vos_dev_write(hPrinter, (devCaps+2), k, &num_written) == USBHOSTPRINTER_OK)

 {}

 else

 { break;}

 }

 }

 printer_iocb.ioctl_code = VOS_IOCTL_USBHOSTPRINTER_DETACH;

 printerstatus = vos_dev_ioctl(hPrinter, &printer_iocb);

 vos_dev_close(hPrinter);

 vos_dev_close(hUsb1);

 vos_halt_cpu();

 }

 }

} while (1);

4.2.2.2.3 Communication Device Class Driver

A communications class driver will be provided which is layered on top of the USB host driver. Note
that not all USB CSC class devices fall within the USB CDC class.

The usbHostCDC_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

The USB Host CDC driver needs to be attached to a suitable USB device to function using the
VOS_IOCTL_USBHOSTCDC_ATTACH IOCTL call specifying an interface on the USB Host Driver.

Copyright © 2012 Future Technology Devices International Ltd. 369

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Driver Hierarchy

CDC Driver hierarchy:

CDC Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

CDC.a

Header Files

USBHost.h

CDC.h

4.2.2.2.3.1 Communication Device Class Return Codes

All calls to the Communications Device Class driver are designed to return the same codes as the
UART driver for common operations. These are listed in the UART Return Codes. An additional set of
error codes is defined for driver specific codes.

USBHOSTCDC_OK

The command completed successfully.

USBHOSTCDC_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

USBHOSTCDC_DMA_NOT_ENABLED
A DMA operation was requested when DMA was not enabled.

USBHOSTCDC_ERROR
An unspecified error occurred.

USBHOSTCDC_NOT_FOUND
The CDC device was not found in an attach operation.

USBHOSTCDC_USBHOST_ERROR
An error was reported from the USB Host interface. The USB Host code is returned in the
low nibble of the return code.

4.2.2.2.3.2 Communication Device Class IOCTL Calls

The Communications Device Class driver accepts the same IOCTL codes as the UART driver. These
are listed in the UART IOCTL Calls topic.

The structure passed to the IOCTL request is the common structure shown in the topic Common
IOCTL Calls.

The following additional IOCTL request codes are supported by the Communications Device Class
driver.

VOS_IOCTL_USBHOSTCDC_ATTACH Attach the driver to a USB interface device.

VOS_IOCTL_USBHOSTCDC_DETACH Detach the driver from the USB interface device.

VOS_IOCTL_USBHOSTCDC_START_POLL Start polling for data from the device.

VOS_IOCTL_USBHOSTCDC_STOP_POLL Stop polling for data from the device.

Copyright © 2012 Future Technology Devices International Ltd. 370

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_USBHOSTCDC_GET_LINE_CODING Get currently configured line coding

VOS_IOCTL_USBHOSTCDC_SET_LINE_CODING Set asynchronous line-character formatting
properties

VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTRO
L_STATE

Generate the RS232 control signals

Description

Attaches the Communications Device Class driver to an interface in the USB Host controller. The host
controller handle is that obtained from vos_dev_open() when the USBHost driver was opened. This
function does not check the VID and PID or the class, subclass and protocol values of the device,
since these are configurable.

Parameters

The device interface handles for the control and data interfaces and USB Host controller handle must
be passed in a structure using the set member of the IOCTL structure.

typedef struct _usbHostCDC_ioctl_cb_attach_t

{

VOS_HANDLE hc_handle;

usbhost_device_handle_ex ifCtrl;

usbhost_device_handle_ex ifData;

} usbHostCDC_ioctl_cb_attach_t;

Returns

If the parameters are incorrect then the return code is USBHOSTCDC_INVALID_PARAMETER. If the
interface does not have control and a bulk IN and bulk OUT endpoint then
USBHOSTCDC_NOT_FOUND is returned. If the attach is successful then returns USBHOSTCDC_OK.

Example

VOS_HANDLE hCDC, hUsbHost1;

common_ioctl_cb_t CDC_iocb;

usbHostCDC_ioctl_cb_attach_t CDC_att;

usbhost_device_handle_ex ifDev1 = 0;

usbhost_device_handle_ex ifDev2 = 0;

hUsbHost1 = vos_dev_open(VOS_DEV_USBHOST1);

hCDC = vos_dev_open(VOS_DEV_CDC);

//

// find first CDC control device and save in ifDev1

// find next CDC device and save in ifDev2

//

// Fill in CDC attach structure

CDC_att.hc_handle = hUsbHost1;

CDC_att.ifCtrl = ifDev1;

CDC_att.ifData = ifDev2;

CDC_iocb.ioctl_code = VOS_IOCTL_USBHOSTCDC_ATTACH;

CDC_iocb.set.data = &CDC_att;

if (vos_dev_ioctl(hCDC, &CDC_ioctl) != USBHOSTCDC_OK)

{

// error

}

Description

This removes the association of the CDC Device driver with the currently connected interface.

Copyright © 2012 Future Technology Devices International Ltd. 371

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTCDC_OK.

Example

cdc_ioctl.ioctl_code = VOS_IOCTL_USBHOSTCDC_DETACH;

vos_dev_ioctl(hCDC, &cdc_ioctl);

Description

Signals the driver to start polling the attached device.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTCDC_OK.

Example

Description

Signals the driver to stop polling the attached device.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTCDC_OK.

Example

Description

This function returns the currently configured line coding. Line coding consists of line-character
formatting properties such as DTE rate, number of data bits, number of stop bits and parity type.

Parameters

The address of a usbhostcdc_line_coding_t structure is written to the get.data field passed in the
common_ioctl_cb_t structure. The usbhostcdc_line_coding_t structure is defined as follows:

typedef struct _usbHostCDC_line_coding_t {

unsigned long dwDTERate; // Data terminal rate, in bits per second

unsigned char bCharFormat; // 0 – 1 stop bit

// 1 - 1.5 stop bits

// 2 – 2 stop bits

unsigned char bParityType; // 0 – None

// 1 – Odd

// 2 – Even

// 3 – Mark

// 4 - Space

unsigned char bDataBits; // Data bits (5,6,7,8 or 16)

} usbHostCDC_line_coding_t;

Copyright © 2012 Future Technology Devices International Ltd. 372

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

If successful, this function returns USBHOSTCDC_OK. Otherwise, a USB Host error code is returned.

Example

See example in VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTROL_STATE.

Description

This function sets asynchronous line-character formatting properties such as DTE rate, number of
data bits, number of stop bits and parity type.

Parameters

A usbhostcdc_line_coding_t structure is filled-in and its address is written to the set.data field passed
in the common_ioctl_cb_t structure. The usbhostcdc_line_coding_t structure is defined in
VOS_IOCTL_USBHOSTCDC_GET_LINE_CODING.

Returns

If successful, this function returns USBHOSTCDC_OK. Otherwise, a USB Host error code is returned.

Example

See example in VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTROL_STATE.

Description

This function generates the RS232 control signals.

Parameters

The address of an unsigned short variable that contains the values of the RS232 control signals is
written to the set.data field in the common_ioctl_cb_t structure. Control signal bits are defined as
follows:

#define USBHOSTCDC_DTE_PRESENT 1

#define USBHOSTCDC_ACTIVATE_CARRIER 2

Returns

If successful, this function returns USBHOSTCDC_OK. Otherwise, a USB Host error code is returned.

Example

VOS_HANDLE hCDC; // handle of already opened CDC device

usbHostCDC_line_coding_t CDC_line;

unsigned short lineStatus;

// Obtain the line coding information for the CDC device

Copyright © 2012 Future Technology Devices International Ltd. 373

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

CDC_iocb.ioctl_code = VOS_IOCTL_USBHOSTCDC_GET_LINE_CODING;

CDC_iocb.get.data = &CDC_line;

vos_dev_ioctl(hCDC, &CDC_iocb);

// Turn off DTE present and Carrier Active signal

lineStatus = 0;

CDC_iocb.ioctl_code = VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTROL_STATE;

CDC_iocb.set.data = &lineStatus;

vos_dev_ioctl(hCDC, &CDC_iocb);

// Turn on the DTE present and Carrier Active signals

lineStatus = (USBHOSTCDC_DTE_PRESENT | USBHOSTCDC_ACTIVATE_CARRIER);

CDC_iocb.ioctl_code = VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTROL_STATE;

CDC_iocb.set.data = &lineStatus;

vos_dev_ioctl(hCDC, &CDC_iocb);

// Set the line coding information back to the previous setting

CDC_iocb.ioctl_code = VOS_IOCTL_USBHOSTCDC_SET_LINE_CODING;

CDC_iocb.set.data = &CDC_line;

vos_dev_ioctl(hCDC, &CDC_iocb);

// Turn on the DTE present and Carrier Active signals

lineStatus = (USBHOSTCDC_DTE_PRESENT | USBHOSTCDC_ACTIVATE_CARRIER);

CDC_iocb.ioctl_code = VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTROL_STATE;

CDC_iocb.set.data = &lineStatus;

vos_dev_ioctl(hCDC, &CDC_iocb);

4.2.2.2.3.3 usbHostCDC_init()

Syntax

unsigned char usbHostCDC_init(unsigned char devNum)

Description

Initialise the USB Host CDC driver, and register the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The driver can be attached to a CDC class device once the USB Host enumeration has completed.

4.2.2.2.4 FT232 Device Driver

The FT232 USB Host driver uses the same common IOCTL codes and read and write methods as the
UART, FIFO and SPI interfaces.

The usbHostFt232_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

The USB Host FT232 driver needs to be attached to a suitable USB device to function using the
VOS_IOCTL_USBHOSTFT232_ATTACH IOCTL call specifying an interface on the USB Host Driver.

The IOCTL call to VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS can be used to determine if data is
available from the device, however, the polling mode must be enabled using

Copyright © 2012 Future Technology Devices International Ltd. 374

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_USBHOSTFT232_START_POLL IOCTL. Failure to start the polling mode will result in the
driver appearing to have no data available although direct reads will still return available data.

Driver Hierarchy

USBHostFT232 Driver hierarchy:

USBHostFT232 Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

USBHostFT232.a

Header Files

USBHost.h

USBHostFT232.h

4.2.2.2.4.1 FT232 Device Return Codes

All calls to the FT232 USB Host Device driver is designed to return the same codes are the UART
driver for common operations. These are listed in theUART Return Codes. An additional set of error
codes are also return driver specific codes.

USBHOSTFT232_OK

The command completed successfully.

USBHOSTFT232_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

USBHOSTFT232_DMA_NOT_ENABLED
A DMA operation was requested when DMA was not enabled.

USBHOSTFT232_ERROR
An unspecified error occurred.

USBHOSTFT232_NOT_FOUND
The FT232 device was not found in an attach operation.

USBHOSTFT232_USBHOST_ERROR
An error was reported from the USB Host interface. The USB Host code is returned in the
low nibble of the return code.

4.2.2.2.4.2 FT232 Device IOCTL Calls

The FT232 USB Host Device driver accepts the same IOCTL codes as the UART driver. These are
listed in the UART IOCTL Calls topic.

The structure passed to the IOCTL request is the common structure shown in the topic Common
IOCTL Calls.

The following additional IOCTL request codes are supported by the FT232 USB Host Device driver.

VOS_IOCTL_USBHOSTFT232_SET_LATENCY Set the device latency timer value.

VOS_IOCTL_USBHOSTFT232_GET_LATENCY Get the current latency timer value.

VOS_IOCTL_USBHOSTFT232_SET_BIT_MODE Set the mode of the various pins on the device.

VOS_IOCTL_USBHOSTFT232_GET_BIT_MODE Get current pin states.

VOS_IOCTL_USBHOSTFT232_EEPROM_READ Read a word of data from the device EEPROM.

Copyright © 2012 Future Technology Devices International Ltd. 375

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_USBHOSTFT232_EEPROM_WRITE Write a word of data to the device EEPROM.

VOS_IOCTL_USBHOSTFT232_EEPROM_ERASE Erase the device EEPROM.

VOS_IOCTL_USBHOSTFT232_ATTACH Attach the driver to a USB interface device.

VOS_IOCTL_USBHOSTFT232_DETACH Detach the driver from the USB interface device.

VOS_IOCTL_USBHOSTFT232_START_POLL Start polling for data from the device.

VOS_IOCTL_USBHOSTFT232_STOP_POLL Stop polling for data from the device.

Description

Sets the latency timer of the device.

Parameters

An 8 bit value is taken from the param member of set.

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. An
error from the USB Host driver may be returned.

Example

Description

Returns the current latency timer setting of the device.

Parameters

An 8 bit value is returned in the param member of get.

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. An
error from the USB Host driver may be returned.

Example

Description

Sets the mode of various functions of the device. Functions and supported modes are device
dependent.

Parameters

The following structure is used to set the bit mode.

typedef struct _usbhostft232_bitmode_t

{

unsigned char mode;

unsigned char mask;

} usbhostft232_bitmode_t;

Available bit modes are:

USBHOSTFT232_BIT_MODE_RESET

USBHOSTFT232_BIT_MODE_ASYNCHRONOUS_BIT_BANG

USBHOSTFT232_BIT_MODE_MPSSE

USBHOSTFT232_BIT_MODE_SYNCHRONOUS_BIT_BANG

USBHOSTFT232_BIT_MODE_MCU_HOST_BUS_EMULATION

USBHOSTFT232_BIT_MODE_FAST_SERIAL

USBHOSTFT232_BIT_MODE_CBUS_BIT_BANG

USBHOSTFT232_BIT_MODE_SYNCHRONOUS_FIFO

Copyright © 2012 Future Technology Devices International Ltd. 376

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Not all devices support all bit modes.

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. An
error from the USB Host driver may be returned.

Example

Description

Gets the current pin states of the device. Pins and supported modes are device dependent.

Parameters

An 8bit value is returned in the param member of get. This will be a bitmap of the current pin status -
1 for high and zero for low.

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. An
error from the USB Host driver may be returned.

Example

Description

Read a byte from the EEPROM of a device. The EEPROM addresses and size are device dependent.

Parameters

The following structure is passed in the data member of get.

typedef struct _usbhostft232_eeprom_t

{

unsigned short ee_address;

unsigned short ee_data;

} usbhostft232_eeprom_t;

The address to read from is set in ee_address member and the value returned in ee_data of the
same structure.

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. An
error from the USB Host driver may also be returned.

Example

Description

Write a byte to the EEPROM of a device. The EEPROM addresses and size are device dependent.

Parameters

The following structure is passed in the data member of set.

typedef struct _usbhostft232_eeprom_t

{

unsigned short ee_address;

unsigned short ee_data;

} usbhostft232_eeprom_t;

Copyright © 2012 Future Technology Devices International Ltd. 377

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The address to write to is set in ee_address member and the value to be written is set in ee_data of
the same structure.

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. An
error from the USB Host driver may also be returned.

Example

Description

Erase the EEPROM of a device.

Parameters

There are no parameters to set.

Returns

An error from the USB Host driver may be returned.

Example

Description

Attaches the FT232 USBHost Device driver to an interface in the USB Host controller. The host
controller handle is that obtained from vos_dev_open() when the USBHost driver was opened. This
function does not check the VID and PID or the class, subclass and protocol values of the device,
since these are configurable.

Parameters

The device interface handle and USB Host controller handle must be passed in a structure using the
set member of the IOCTL structure. The port number of the interface to address must also be
specified.

typedef struct _usbhostft232_ioctl_cb_attach_t

{

VOS_HANDLE hc_handle;

usbhost_device_handle_ex ifDev;

unsigned char ftPort;

} usbhostft232_ioctl_cb_attach_t;

Returns

If the parameters are incorrect then the return code is USBHOSTFT232_INVALID_PARAMETER. If the
interface does not have control and a bulk IN and bulk OUT endpoint then
USBHOSTFT232_NOT_FOUND is returned. If the attach is successful then returns USBHOSTFT232_OK.

Example

VOS_HANDLE hFT232, hUsbHost1;

hUsbHost1 = vos_dev_open(VOS_DEV_USBHOST1);

hFT232 = vos_dev_open(VOS_DEV_FT232);

ft232_ioctl.ioctl_code = VOS_IOCTL_USBHOSTFT232_ATTACH;

ft232_ioctl.set.data = &ft232_att;

ft232_att.hc_handle = hUsbHost1;

ft232_att.ifDev = ifDev;

ft232_att.ftPort = USBHOSTFT232_PORTA;

if (vos_dev_ioctl(hFT232, &ft232_ioctl) == USBHOSTFT232_OK)

{

Copyright © 2012 Future Technology Devices International Ltd. 378

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (vos_dev_read(hFT232, buf, num_written, &num_read) != USBHOSTFT232_OK)

{

return;

}

}

Description

This removes the association of the FT232 USB Host Device driver with the currently connected
interface.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTFT232_OK.

Example

ft232_ioctl.ioctl_code = VOS_IOCTL_USBHOSTFT232_DETACH;

vos_dev_ioctl(hFT232, &ft232_ioctl);

Description

Signals the driver to start polling the attached device.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTFT232_OK.

Example

Description

Signals the driver to stop polling the attached device.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTFT232_OK.

Example

4.2.2.2.4.3 usbHostFt232_init()

Syntax

unsigned char usbHostFt232_init(unsigned char devNum)

Description

Initialise the USB Host FT232 driver for the port specified in the context and registers the driver with
the Device Manager.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 379

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The driver can be attached to an FT232 device once the USB Host enumeration has completed.

4.2.2.2.4.4 FT232 Device Example

unsigned short num_written;

VOS_HANDLE hFT232, hUart;

common_ioctl_cb_t ft232_ioctl;

usbhostft232_ioctl_cb_attach_t ft232_att;

hFT232 = vos_dev_open(VOS_DEV_FT232);

hUart = vos_dev_open(VOS_DEV_UART);

ft232_ioctl.ioctl_code = VOS_IOCTL_USBHOSTFT232_ATTACH;

ft232_ioctl.set.data = &ft232_att;

ft232_att.hc_handle = hUsbHost1;

ft232_att.ifDev = ifDev;

ft232_att.ftPort = USBHOSTFT232_PORTA;

if (vos_dev_ioctl(hFT232, &ft232_ioctl) == USBHOSTFT232_OK)

{

// user ioctl to reset device

ft232_ioctl.ioctl_code = VOS_IOCTL_COMMON_RESET;

if (vos_dev_ioctl(hFT232, &ft232_ioctl) != USBHOST_OK)

{

return;

}

// baud rate is calculated as per parameter

ft232_ioctl.ioctl_code = VOS_IOCTL_USBHOSTFT232_SET_BAUD_RATE;

ft232_ioctl.set.uart_baud_rate = USBHOSTFT232_BAUD_9600;

vos_dev_ioctl(hFT232, &ft232_ioctl);

// wait for data to be received on FT232 device

while (1)

{

ft232_ioctl.ioctl_code = VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS;

vos_dev_ioctl(hFT232, &ft232_ioctl);

num_written = ft232_ioctl.get.queue_stat;

if (num_written > 64)

num_written = 64;

if (num_written) break;

}

// read data into buffer

if (vos_dev_read(hFT232, buf, num_written, &num_read) != USBHOSTFT232_OK)

{

return;

}

if (num_read)

{

// retransmit data out on UART

if (vos_dev_write(hUart, buf, num_read, &num_written) != UART_OK)

{

return;

}

Copyright © 2012 Future Technology Devices International Ltd. 380

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

}

}

vos_dev_close(hFT232);

vos_dev_close(hUart);

}

4.2.2.2.5 Still Image Class Driver

A Still Image Class driver is supplied to perform basic operations on a Still Image Class device which
supports PTP (Picture Transfer Protocol) and the PIMA command set (USB Class 0x06, Subclass 0x01
and Protocol 0x01).

Driver Hierarchy

Still Image Driver hierarchy:

Still Image Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

StillImage.a

Header Files

USBHost.h

StillImage.h

4.2.2.2.5.1 Still Image Return Codes

All calls to the Still Image driver will return one of the following status codes.

STILLIMAGE_OK

The command completed successfully.

STILLIMAGE_NOT_FOUND

The interface supplied to an attach IOCTL could not be found or did not have suitable
endpoints. It may also occur if a device was removed unexpectedly.

STILLIMAGE_READ_ONLY

The still image driver does not support writing data to a device. This will be returned for a
vos_dev_write() operation.

STILLIMAGE_PENDING

Not currently used.

STILLIMAGE_INVALID_PARAMETER

A parameter in an IOCTL request outwith the valid range.

STILLIMAGE_INVALID_BUFFER

Not currently used.

STILLIMAGE_INVALID_FILE_TYPE

Not currently used.

STILLIMAGE_EXISTS

Not currently used.

STILLIMAGE_NOT_OPEN

A vos_dev_read() file operation was attempted when no file was opened.

STILLIMAGE_EOF

Not currently used.

Copyright © 2012 Future Technology Devices International Ltd. 381

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

STILLIMAGE_DIRECTORY_TABLE_FULL

Not currently used.

STILLIMAGE_DISK_FULL

Not currently used.

STILLIMAGE_ERROR

The device to attach to is invalid. The USB Class and Protocol do not match the supported
types. A command sent to the device failed.

STILLIMAGE_HC_ERROR

A USB Host controller error was encountered. This is returned in the low nibble of the return
code.

4.2.2.2.5.2 Still Image Read Operations

Once an object is opened using STILLIMAGE_IOCTL_OPEN_OBJECT then vos_dev_read() can be
used to stream data from the object. There can be only one object opened at a time and it must be
closed when complete.

It is possible to stream directly to a file using the fat_fileWrite() function. This can take a handle to a
device and stream a set amount of data from the device to a file. Alternatively, data can be read into
a buffer with vos_dev_read() and handled accordingly.

There is no support for writing to a Still Image device using vos_dev_write().

Example

stillimage_ioctl_cb_t camera_iocb;

stillimage_ioctl_cb_object_info_t obj_info;

int handle;

file_context_t FILE;

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_OPEN_OBJECT;

camera_iocb.set = &handle;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

if (fat_fileOpen(fatContext, &FILE, &obj_info.name, FILE_MODE_WRITE | FILE_MODE_PLUS) != FAT_OK)

{

 break;

}

if (fat_fileWrite(&FILE, obj_info.len, NULL, hCamera, NULL) != FAT_OK)

{

 break;

}

if (fat_fileClose(&FILE) != FAT_OK)

{

 break;

}

4.2.2.2.5.3 Still Image Class Driver IOCTL Calls

Calls to Still Image driver IOCTL method take the form:

typedef struct _stillimage_ioctl_cb_t {

unsigned char ioctl_code;

// read buffer

unsigned char *get;

// write butter

unsigned char *set;

} stillimage_ioctl_cb_t;

The following IOCTL request codes are supported.

Copyright © 2012 Future Technology Devices International Ltd. 382

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

STILLIMAGE_IOCTL_ATTACH Attach a USB device to the driver

STILLIMAGE_IOCTL_GET_FIRST_OBJECT Get a handle to the first object on the device

STILLIMAGE_IOCTL_GET_OBJECT_INFO Get an information structure for the given handle

STILLIMAGE_IOCTL_OPEN_OBJECT Open the object using a handle

STILLIMAGE_IOCTL_CLOSE_OBJECT Close object from a handle

STILLIMAGE_IOCTL_DELETE_OBJECT Delete the object referred to from a handle

STILLIMAGE_IOCTL_INITIATE_CAPTURE If supported by the device, initiate an image capture

Description

Attaches the Still Image driver to an interface in the USB Host controller. The host controller handle is
that obtained from vos_dev_open() when the USBHost driver was opened. This function checks the
class, subclass and protocol values of the device to ensure they are compatible with the driver.

Parameters

The device interface handle and USB Host controller handle must be passed in a structure using the
set member of the IOCTL structure.

typedef struct _stillimage_ioctl_cb_attach_t

{

VOS_HANDLE hc_handle;

usbhost_device_handle_ex ifDev;

} stillimage_ioctl_cb_attach_t;

Returns

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_NOT_FOUND if the interface does not have control and a bulk IN and bulk OUT endpoint
STILLIMAGE_ERROR when the class, subclass and protocol for the device does not match that
supported

Example

VOS_HANDLE hUsb1,

 hCamera;

usbhost_device_handle_ex ifDev1 = 0;

usbhost_ioctl_cb_t hc_iocb;

usbhost_ioctl_cb_class_t hc_iocb_class;

stillimage_ioctl_cb_t camera_iocb;

stillimage_ioctl_cb_attach_t camera_att;

// find Still Image class device

hc_iocb_class.dev_class = USB_CLASS_IMAGE;

hc_iocb_class.dev_subclass = USB_SUBCLASS_IMAGE_STILLIMAGE;

hc_iocb_class.dev_protocol = USB_PROTOCOL_IMAGE_PIMA;

// user ioctl to find first hub device

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

hc_iocb.handle.dif = NULL;

hc_iocb.set = &hc_iocb_class;

hc_iocb.get = &ifDev1;

if (vos_dev_ioctl(hUsb1, &hc_iocb) != USBHOST_OK)

{

 break;

}

// now we have a device, initialise a camera driver for it

hCamera = vos_dev_open(VOS_DEV_STILL_IMAGE);

// boms_attach

Copyright © 2012 Future Technology Devices International Ltd. 383

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

camera_att.hc_handle = hUsb1;

camera_att.ifDev = ifDev1;

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_ATTACH;

camera_iocb.set = &camera_att;

camera_iocb.get = NULL;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

Description

Obtains a handle to the first object in the storage of the device.

Parameters

The handle is a 32 bit value returned in the variable pointed to by the get member of the IOCTL
structure.

Returns

The handle is updated and one of the following statuses is returned.

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_NOT_FOUND if there are no objects on the device
STILLIMAGE_ERROR the command sent to the device failed

Example

See example in STILLIMAGE_IOCTL_OPEN_OBJECT.

Description

Opens the object in the storage of the device given a handle. Once opened then the data from the
object can be read using vos_dev_read().

Parameters

The handle is a 32 bit value sent in the variable pointed to by the set member of the IOCTL
structure.

Returns

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_ERROR the command sent to the device failed

Example

VOS_HANDLE hCamera;

stillimage_ioctl_cb_t camera_iocb;

int handle;

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_GET_FIRST_OBJECT;

camera_iocb.get = &handle;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_OPEN_OBJECT;

camera_iocb.set = &handle;

Copyright © 2012 Future Technology Devices International Ltd. 384

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_CLOSE_OBJECT;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_DELETE_OBJECT;

camera_iocb.set = &handle;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

Description

Obtains information about an object from the device. This includes the filename, file length and type
of file. The type of file is 0x3801 for JPG files.

Parameters

The handle is a 32 bit value sent in the variable pointed to by the set member of the IOCTL
structure.

A structure to receive the object information is obtained by passing a pointer to the following
structure in the get member of the IOCTL structure.

typedef struct _stillimage_ioctl_cb_object_info_t

{

 unsigned int len;

 char name[11];

 unsigned short format;

} stillimage_ioctl_cb_object_info_t;

Returns

The object information is updated in the structure and the return code is one of the following.

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_ERROR the command sent to the device failed

Example

stillimage_ioctl_cb_t camera_iocb;

stillimage_ioctl_cb_object_info_t obj_info;

int handle;

int i;

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_GET_FIRST_OBJECT;

camera_iocb.get = &handle;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_GET_OBJECT_INFO;

camera_iocb.set = &handle;

camera_iocb.get = &obj_info;

Copyright © 2012 Future Technology Devices International Ltd. 385

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

for (i = 0; i < 11; i++) printf(obj_info.name[i];

printf(" length: %d\n", obj_info.len);

Description

Closes an object that is open in the storage of the device given a handle.

Parameters

The handle is a 32 bit value sent in the variable pointed to by the set member of the IOCTL
structure.

Returns

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_ERROR the command sent to the device failed

Example

See example in STILLIMAGE_IOCTL_OPEN_OBJECT.

Description

Deletes an object on the device's storage given a handle. The object must not be opened with
STILLIMAGE_IOCTL_OPEN_OBJECT.

Parameters

The handle is a 32 bit value sent in the variable pointed to by the set member of the IOCTL
structure.

Returns

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_ERROR the command sent to the device failed

Example

See example in STILLIMAGE_IOCTL_OPEN_OBJECT.

Description

If supported by the device, initiate an image capture and return a handle to the object captured in
the storage of the device.

Parameters

The handle is a 32 bit value returned in the variable pointed to by the get member of the IOCTL
structure.

Returns

STILLIMAGE_OK if the attach is successful
STILLIMAGE_INVALID_PARAMETER if the parameters are incorrect
STILLIMAGE_NOT_FOUND if there are no objects on the device
STILLIMAGE_ERROR the command sent to the device failed

Example

Copyright © 2012 Future Technology Devices International Ltd. 386

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

stillimage_ioctl_cb_t camera_iocb;

stillimage_ioctl_cb_object_info_t obj_info;

int handle;

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_INITIATE_CAPTURE;

camera_iocb.get = &handle;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

camera_iocb.ioctl_code = STILLIMAGE_IOCTL_GET_OBJECT_INFO;

camera_iocb.set = &handle;

camera_iocb.get = &obj_info;

if (vos_dev_ioctl(hCamera, &camera_iocb) != STILLIMAGE_OK)

{

 break;

}

4.2.2.2.5.4 stillimage_init()

Syntax

void stillimage_init(unsigned char devNum)

Description

Initialise the Still Image driver for the port specified in the context and registers the driver with the
Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function does not return any values.

Comments

The driver can be attached to a Still Image device once the USB Host enumeration has completed.

4.2.2.2.6 Android Open Accessory Class Driver

A driver is supplied to allow communication with Google Android systems via the Android Open
Accessory protocol. This allows devices running Android 2.3.4 or 3.1 (or later) which support
Android's accessory mode to communicate with a host controller device as an alternative to providing
USB host support on the Android platform.

Driver Hierarchy

Android Accessory Driver hierarchy:

Android Accessory
Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

http://developer.android.com/guide/topics/usb/adk.html
http://developer.android.com/guide/topics/usb/adk.html

Copyright © 2012 Future Technology Devices International Ltd. 387

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

USBHost.a

USBHostAndroidAccessory.a

Header Files

USBHost.h

USBHostAndroidAccessory.h

4.2.2.2.6.1 Android Accessory Return Codes

Status Codes

All calls to the USB Host Android Accessory driver will return one of the following status codes.

USBHOSTANDROIDACCESSORY_OK

The command completed successfully.

USBHOSTANDROIDACCESSORY_INVALID_PARAMETER

An invalid parameter was passed to the driver.

USBHOSTANDROIDACCESSORY_NOT_FOUND

An Android Open Accessory device could not be found.

USBHOSTANDROIDACCESSORY_USBHOST_ERROR

The USB Host driver reported an error when attempting to communicate with the Android
accessory.

USBHOSTANDROIDACCESSORY_FATAL_ERROR

An error has occurred that will prevent the driver from functioning properly.

4.2.2.2.6.2 Android Accessory IOCTL Calls

The structure passed to the IOCTL request is the common structure shown in the topic Common
IOCTL Calls.

The following IOCTL request codes are supported by the Android Accessory USB Host Device driver.

VOS_IOCTL_USBHOSTANDROIDACCESSORY_ATTACH Attempt to locate an Android
Open Accessory protocol
capable device and if found
enable it for use as in
accessory mode

VOS_IOCTL_USBHOSTANDROIDACCESSORY_DETACH Remove an association of the
Android Accessory driver with a
USB device and the host
controller

VOS_IOCTL_USBHOSTANDROIDACCESSORY_GET_PROTOCOL_REVISI
ON

Retrieve the Android Open
Accessory protocol revision
number for the device currently
enabled in accessory mode

Description

Attempts to attach the USB Host Android Accessory driver to an interface in the USB Host controller.
The host controller handle is that obtained from vos_dev_open() when the USBHost driver was
opened.

When attempting to attach to an Android system, this function will check for available devices
connected to the specified USB host in accessory mode. If none are found, it will then attempt to
check the Android accessory protocol revision of all devices connected to the USB host to determine
if a device supports the Android Open Accessory protocol. If it does, it will then configure the device
using the identification strings specified and then initiate accessory mode.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 388

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The USB Host controller handle and accessory identifying string information must be passed in a
structure using the set member of the IOCTL structure.

typedef struct _usbHostAndroidAccessory_ioctl_cb_attach_t

{

VOS_HANDLE hc_handle;

char* manufacturer;

char* model;

char* description;

char* version;

char* uri;

char* serial;

} usbHostAndroidAccessory_ioctl_cb_attach_t;

Returns

USBHOSTANDROIDACCESSORY_OK if the attach is successful
USBHOSTANDROIDACCESSORY_NOT_FOUND if no Android Open Accessory capable device was
located or entering accessory mode failed.

Example

See example in USB Host Android Accessory Example.

Description

This removes the association of the USB Host Android Accessory driver with the host controller.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTANDROIDACCESSORY_OK.

Example

See example in USB Host Android Accessory Example.

Description

Retrieves the Android accessory protocol revision for the device that the driver is currently attached
to.

Parameters

A pointer to an unsigned short should be supplied for the data member of get to receive the protocol
revision.

Returns

Always returns USBHOSTANDROIDACCESSORY_OK.

Example

See example in USB Host Android Accessory Example.

4.2.2.2.6.3 usbHostAndroidAccessory_init()

Syntax

unsigned char usbHostAndroidAccessory_init(unsigned char devNum)

Description

Copyright © 2012 Future Technology Devices International Ltd. 389

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Initialise the USB Host Android Accessory driver and registers the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The driver can be attached to an Android Open Accessory device once the USB Host enumeration has
completed.

4.2.2.2.6.4 USB Host Android Accessory Example

/*

** AndroidAccessoryLEDDemo.c

**

** C Source File

**

** Part of solution AndroidAccessory in project USBAndroidAccessory

**

**

** Description: This sample demonstrates how to find an Android Open Accessory interface on a

** device and then exchange data with the device to toggle an LED on a VNC2 GPIO.

*/

#include "vos.h"

#include "string.h"

#include "USBHost.h"

#include "ioctl.h"

#include "USBAndroidAccessory.h"

#include "USBHostAndroidAccessory.h"

#include "GPIO.h"

#define SIZEOF_FIRMWARE_TASK_MEMORY 1024

// LEDs are on when pin is low...

#define LED_ON 0xF7

#define LED_OFF 0xFF

enum {

VOS_DEV_USBHOST = 0,

VOS_DEV_ANDROID_ACCESSORY,

VOS_DEV_GPIO,

VOS_NUMBER_OF_DEVICES

}

VOS_HANDLE hUsb;

VOS_HANDLE hAccessory;

VOS_HANDLE hGpio;

vos_tcb_t *tcbFirmware;

void firmware(void);

void main(void)

{

// USB Host configuration context

Copyright © 2012 Future Technology Devices International Ltd. 390

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

usbhost_context_t usb_ctx;

// GPIO configuration context

gpio_context_t gpioCtx;

vos_init(VOS_QUANTUM,VOS_TICK_INTERVAL,VOS_NUMBER_OF_DEVICES);

vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

// USB host only - no IOMux for now

if (vos_get_package_type() == VINCULUM_II_64_PIN)

{

// GPIO port A bit 3 to pin 56

vos_iomux_define_output(56, IOMUX_OUT_GPIO_PORT_A_3); // LED1

// GPIO port A bit 4 to pin 61

vos_iomux_define_output(61, IOMUX_OUT_GPIO_PORT_A_4); // LED2

// GPIO port A bit 5 to pin 62

vos_iomux_define_output(62, IOMUX_OUT_GPIO_PORT_A_5); // LED3

// GPIO port A bit 6 to pin 63

vos_iomux_define_output(63, IOMUX_OUT_GPIO_PORT_A_6); // LED4

// GPIO port A bit 7 to pin 64

vos_iomux_define_output(64, IOMUX_OUT_GPIO_PORT_A_7); // LED5

}

else if (vos_get_package_type() == VINCULUM_II_48_PIN)

{

// GPIO port A bit 3 to pin 19

vos_iomux_define_output(19, IOMUX_OUT_GPIO_PORT_A_3); // LED1

// GPIO port A bit 4 to pin 20

vos_iomux_define_output(20, IOMUX_OUT_GPIO_PORT_A_4); // LED2

// GPIO port A bit 5 to pin 21

vos_iomux_define_output(21, IOMUX_OUT_GPIO_PORT_A_5); // LED3

// GPIO port A bit 6 to pin 22

vos_iomux_define_output(22, IOMUX_OUT_GPIO_PORT_A_6); // LED4

// GPIO port A bit 7 to pin 23

vos_iomux_define_output(23, IOMUX_OUT_GPIO_PORT_A_7); // LED5

}

else // VINCULUM_II_32_PIN

{

// GPIO port A bit 3 to pin 32

vos_iomux_define_output(32, IOMUX_OUT_GPIO_PORT_A_3); // LED1

}

// init USB host

// use a max of 4 USB devices

usb_ctx.if_count = 4;

usb_ctx.ep_count = 8;

usb_ctx.xfer_count = 2;

usb_ctx.iso_xfer_count = 2;

usbhost_init(VOS_DEV_USBHOST, -1, &usb_ctx);

// init Android Accessory

usbHostAndroidAccessory_init(VOS_DEV_ANDROID_ACCESSORY);

// init GPIO

gpioCtx.port_identifier = GPIO_PORT_A;

// Initializes our device with the device manager.

gpio_init(VOS_DEV_GPIO, &gpioCtx);

// create threads

tcbFirmware = vos_create_thread_ex(25, SIZEOF_FIRMWARE_TASK_MEMORY, firmware, "AndroidLEDToggle\0", 0);

vos_start_scheduler();

main_loop:

goto main_loop;

}

Copyright © 2012 Future Technology Devices International Ltd. 391

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

void firmware(void)

{

unsigned char i;

unsigned char readBuf[64];

unsigned short numRead;

unsigned char writeBuf[64];

unsigned short numWritten;

usbhost_ioctl_cb_t usbhost_iocb;

common_ioctl_cb_t androidAccessory_cb;

usbHostAndroidAccessory_ioctl_cb_attach_t atInfo;

unsigned char status;

// setup strings for the accessory

// the manufacturer, model and version strings should match those in the

// application's accessory_filter.xml file!

// This will allow the application to auto-launch when the accessory is

// connected

char *manufacturer = "FTDI\0";

char *model = "VNC2\0";

char *description = "Vinculum Accessory Test\0";

char *version = "0.1.0\0";

char *uri = "http://www.ftdichip.com\0";

char *serial = "VinculumAccessory1\0";

unsigned char ledState = 0;

gpio_ioctl_cb_t gpio_iocb;

unsigned char portData = 0xFF; // LEDs on when low, off when high

unsigned short protocolRevision = 0;

// Open devices

hUsb = vos_dev_open(VOS_DEV_USBHOST);

hAccessory = vos_dev_open(VOS_DEV_ANDROID_ACCESSORY);

hGpio = vos_dev_open(VOS_DEV_GPIO);

// Set all pins to output using an ioctl.

gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

gpio_iocb.value = 0xFF;

// Send the ioctl to the device manager.

vos_dev_ioctl(hGpio, &gpio_iocb);

while (1)

{

// check to see if a USB device has been plugged in...

usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_CONNECT_STATE;

usbhost_iocb.get = &i;

vos_dev_ioctl(hUsb, &usbhost_iocb);

// if it has...

if (i == PORT_STATE_ENUMERATED)

{

do

{

// try to attach the Android Accessory driver to a USB device

atInfo.hc_handle = hUsb;

atInfo.manufacturer = manufacturer;

atInfo.model = model;

atInfo.description = description;

atInfo.version = version;

atInfo.uri = uri;

atInfo.serial = serial;

androidAccessory_cb.ioctl_code = VOS_IOCTL_USBHOSTANDROIDACCESSORY_ATTACH;

androidAccessory_cb.set.data = &atInfo;

status = vos_dev_ioctl(hAccessory, &androidAccessory_cb);

Copyright © 2012 Future Technology Devices International Ltd. 392

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (status == USBHOSTANDROIDACCESSORY_OK)

{

// successfully found and attached to an Android Accessory device

// Write data to the GPIO port - bit 3 to toggle LED1 on V2EVAL board.

vos_dev_write(hGpio, &portData, 1, NULL);

// get the protocol revision - should be 0x0100 for now

androidAccessory_cb.ioctl_code = VOS_IOCTL_USBHOSTANDROIDACCESSORY_GET_PROTOCOL_REVISION;

androidAccessory_cb.get.data = &protocolRevision;

status = vos_dev_ioctl(hAccessory, &androidAccessory_cb);

if (protocolRevision != 0x100)

{

vos_halt_cpu();

}

while (status == USBHOSTANDROIDACCESSORY_OK)

{

// read a message from the Android device

// wrap this in the accessory driver read function

// NOTE: this call may return with less data than was requested

// In this case, we are requesting 64 bytes to fill our buffer,

// but our Android app will only send 1 byte!

status = vos_dev_read(hAccessory,readBuf, sizeof(readBuf) , &numRead);

// process the message from the Android device

// application specific - we are only sending messages of 1 byte here,

// but his could be an array of bytes instead...

if (readBuf[0] == 0xAD)

{

if (ledState == 1)

{

ledState = 0;

portData = LED_OFF;

}

else if (ledState == 0)

{

ledState = 1;

portData = LED_ON;

}

// update the LED

vos_dev_write(hGpio,&portData,1,NULL);

}

// send a response to the Android device

// wrap this in the accessory driver write function

// Again, we are only sending messages of 1 byte here,

// but his could be an array of bytes instead...

if (ledState == 0)

writeBuf[0] = 0x20; // LED is off

else if (ledState == 1)

writeBuf[0] = 0x10; // LED is on

status = vos_dev_write(hAccessory,writeBuf, 1 , &numWritten);

}

// if our status is not OK, we've probably been unplugged

// detach...

androidAccessory_cb.ioctl_code = VOS_IOCTL_USBHOSTANDROIDACCESSORY_DETACH;

status = vos_dev_ioctl(hAccessory, &androidAccessory_cb);

// reset LED state for re-connect later...

ledState = 0;

portData = LED_OFF;

vos_dev_write(hGpio, &portData, 1, NULL);

break;

}

Copyright © 2012 Future Technology Devices International Ltd. 393

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

}

while (1);

}

}

}

4.2.2.2.7 HID Class Driver

A HID class driver will be provided which is layered on top of the USB host driver.

The usbHostHID_init() function must be called to initialise the driver before the kernel scheduler is
started with vos_start_scheduler().

The USB Host HID driver needs to be attached to a suitable USB device to function using the
VOS_IOCTL_USBHOSTHID_ATTACH IOCTL call specifying an interface on the USB Host Driver.

Driver Hierarchy

USB Host HID Driver hierarchy:

USB Host HID Driver

USB Host Driver

VOS Kernel

USB Host Hardware

Library Files

USBHost.a

USBHostHID.a

Header Files

USBHost.h

USBHostHID.h

4.2.2.2.7.1 HID Class Return Codes

Status Codes

All calls to the USB Host HID driver will return one of the following status codes.

USBHOSTHID_OK

The command completed successfully.

USBHOSTHID_INVALID_PARAMETER

An invalid parameter was passed to the driver.

USBHOSTHID_ERROR

The command completion failed.

USBHOSTHID_NOT_FOUND

The HID device could not be found.

USBHOSTHID_USBHOST_ERROR

The USB Host driver reported an error when attempting to communicate with the HID
device.

USBHOSTHID_FATAL_ERROR

An error has occurred that will prevent the driver from functioning properly

Copyright © 2012 Future Technology Devices International Ltd. 394

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.2.7.2 HID Class Read and Write Operations

The USB Host HID driver provides a read and a write function to receive input report data from the
HID device and write out to the device (when this is supported). The Interrupt IN and Interrupt OUT
endpoints are used for the vos_dev_read() and vos_dev_write() calls to the USBHostHID device. If
the device does not present an Interrupt OUT endpoint then it is not possible to write to the device.

The read function will return USBHOSTHID_OK on success or USBHOSTHID_ERROR if the USB Host
has returned an error.

4.2.2.2.7.3 HID Class IOCTL Calls

Calls to the IOCTL functions for the USB Host HID driver take the form:

typedef struct _usbHostHID_ioctl_t

{

uint8 ioctl_code;

uint8 descriptorType;

uint8 descriptorIndex;

uint8 idleDuration;

uint8 protocolType;

uint8 reportType;

uint8 reportID;

uint16 Length;

union

{

unsigned char *data;

usbHostHID_ioctl_cb_attach_t *att;

} set;

union

{

unsigned char *data;

} get;

} usbHostHID_ioctl_t;

The following IOCTL request codes are supported by the USB Host HID driver.

VOS_IOCTL_USBHOSTHID_ATTACH Attach the driver to a USB interface device.

VOS_IOCTL_USBHOSTHID_DETACH Detach the driver to a USB interface device.

VOS_IOCTL_USBHOSTHID_GET_DESCRIPTOR Gets a descriptor from the device.

VOS_IOCTL_USBHOSTHID_GET_PROTOCOL Gets the current active protocol.

VOS_IOCTL_USBHOSTHID_SET_PROTOCOL Sets the current active protocol.

VOS_IOCTL_USBHOSTHID_GET_REPORT Gets a report from the device.

VOS_IOCTL_USBHOSTHID_SET_REPORT Sends a report to the device, possibly setting the
state of input, output, or feature controls.

VOS_IOCTL_USBHOSTHID_GET_IDLE Gets the current idle rate for a particular Input
report.

VOS_IOCTL_USBHOSTHID_SET_IDLE Silences a particular report on the Interrupt In
pipe until a new event occurs or the specified
amount of time passes.

Description

Attaches the USB Host HID driver to an interface in the USB Host controller. The host controller
handle is that obtained

from vos_dev_open() when the USBHost driver was opened. This function checks the interface class

Copyright © 2012 Future Technology Devices International Ltd. 395

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

of the device to ensure it is being attached to a HID class interface.

Parameters

The device interface handle and USB Host controller handle must be passed in a structure using the
set member of the IOCTL structure.

typedef struct _usbHostHID_ioctl_cb_attach_t

{

 VOS_HANDLE hc_handle;

 usbhost_device_handle_ex ifDev;

} usbHostHID_ioctl_cb_attach_t;

Returns

USBHOSTHID_OK if the attach is successful

USBHOSTHID_NOT_FOUND if the interface is not HID class

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

usbHostHID_ioctl_cb_attach_t hid_att;

usbhost_device_handle_ex ifDev;

hid_att.hc_handle = hUSBHOST_2;

hid_att.ifDev = ifDev;

usbHID_ioctl.set.att = &hid_att;

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_ATTACH;

 vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Removes the association of the USB Host HID driver with the currently connected interface.

Parameters

There are no parameters to set.

Returns

Always returns USBHOSTHID_OK.

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_DETACH;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Gets the descriptor of the selected descriptor type and descriptor index.

Parameters

descriptorType (in) type of the descriptor

descriptorIndex (in) index of the descriptor

Length (in) descriptor length

get.data (out) pointer to the descriptor buffer

Returns

Returns USBHOSTHID_OK on success.

Example

Copyright © 2012 Future Technology Devices International Ltd. 396

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

unsigned char descriptorBuffer[64];

usbHID_ioctl.descriptorType = USB_DESCRIPTOR_TYPE_REPORT;

usbHID_ioctl.descriptorIndex = USB_HID_DESCRIPTOR_INDEX_ZERO;

usbHID_ioctl.Length = 64;

usbHID_ioctl.get.data = &descriptorBuffer[0];

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_GET_DESCRIPTOR;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Gets the current active protocol.

Parameters

get.data (out) Reads the value of protocol

Returns

Returns USBHOSTHID_OK on success.

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

unsigned char bProtocol;

usbHID_ioctl.get.data = &bProtocol;

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_GET_PROTOCOL;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Sets the current active protocol.

Parameters

protocolType (in) writes the value of protocol

Returns

Returns USBHOSTHID_OK on success.

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

usbHID_ioctl.protocolType = 0;

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_SET_PROTOCOL;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Gets the report of the selected report type and report ID.

Parameters

reportType (in) type of report

reportID (in) report ID

Length (in) report length

get.data (out) pointer to the report buffer

Returns

Returns USBHOSTHID_OK on success.

Copyright © 2012 Future Technology Devices International Ltd. 397

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

unsigned char reportBuffer[8];

usbHID_ioctl.reportType = USB_HID_REPORT_TYPE_INPUT;

usbHID_ioctl.reportID = USB_HID_REPORT_ID_ZERO;

usbHID_ioctl.Length = 8;

usbHID_ioctl.get.data = &reportBuffer[0];

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_GET_REPORT;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Sets the report of the selected report type and report ID.

Parameters

reportType (in) type of report

reportID (in) report ID

Length (in) report length

set.data (out) pointer to the report buffer

Returns

Returns USBHOSTHID_OK on success.

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

unsigned char reportBuffer[8];

reportBuffer[0] = 0x04;

reportBuffer[1] = 0x06;

reportBuffer[2] = 0x01;

reportBuffer[3] = 0x00;

reportBuffer[4] = 0x00;

reportBuffer[5] = 0x00;

reportBuffer[6] = 0x00;

reportBuffer[7] = 0x00;

usbHID_ioctl.reportType = USB_HID_REPORT_TYPE_OUTPUT;

usbHID_ioctl.reportID = USB_HID_REPORT_ID_ZERO;

usbHID_ioctl.Length = 8;

usbHID_ioctl.set.data = &reportBuffer[0];

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_SET_REPORT;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Gets the current idle rate for a particular Input report.

Parameters

reportID (in) report ID

get.data (out) Reads the value of idle rate

Returns

Returns USBHOSTHID_OK on success.

Example

Copyright © 2012 Future Technology Devices International Ltd. 398

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

unsigned char idleTime;

usbHID_ioctl.reportID = USB_HID_REPORT_ID_ZERO;

usbHID_ioctl.get.data = &idleTime ;

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_GET_IDLE;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

Description

Silences a particular report on the Interrupt In pipe until a new event occurs or the specified amount
of time passes.

Parameters

reportID (in) report ID

idleDuration (in) Writes the value of idle rate

Returns

Returns USBHOSTHID_OK on success.

Example

VOS_HANDLE hUsbHID;

usbHostHID_ioctl_t usbHID_ioctl;

usbHID_ioctl.reportID = USB_HID_REPORT_ID_ZERO;

usbHID_ioctl.idleDuration = 0x20;

usbHID_ioctl.ioctl_code = VOS_IOCTL_USBHOSTHID_SET_IDLE;

vos_dev_ioctl(hUsbHID, &usbHID_ioctl);

4.2.2.2.7.4 usbHostHID_init()

Syntax

uint8 usbHostHID_init(uint8 vos_dev_num)

Description

Initialise the USB Host HID driver and registers the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
vos_dev_num parameter.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

The driver can be attached to a HID device once the USB Host enumeration has completed.

4.2.2.2.7.5 HID Driver Example

usbHostHID_ioctl_t hid_iocb;

common_ioctl_cb_t uart_iocb;

usbhost_device_handle ifDev; // device handle

usbhost_ioctl_cb_t hc_iocb; // Host Controller ioctl request block

unsigned char connectStatus, byteCount,status;

unsigned short num_read;

do

{

open_drivers();

Copyright © 2012 Future Technology Devices International Ltd. 399

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

do

{

vos_delay_msecs(1000);

// wait for enumeration to complete

message("Waiting for enumeration\r\n");

// user ioctl to see if bus available

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_GET_CONNECT_STATE;

hc_iocb.get = &connectStatus;

status = vos_dev_ioctl(hUSBHOST_2, &hc_iocb);

} while (connectStatus != PORT_STATE_ENUMERATED);

if (connectStatus == PORT_STATE_ENUMERATED)

{

message("Enumeration complete\r\n");

attach_drivers();

if (hUSBHOST_HID == NULL)

{

message("No Wingman Found - code ");

number(status);

message(eol);

break;

}

// get report descriptor

hid_iocb.descriptorType = USB_DESCRIPTOR_TYPE_REPORT;

hid_iocb.descriptorIndex = USB_HID_DESCRIPTOR_INDEX_ZERO;

hid_iocb.Length = 0x40;

hid_iocb.get.data=&buf[0];

hid_iocb.ioctl_code = VOS_IOCTL_USBHOSTHID_GET_DESCRIPTOR;

status = vos_dev_ioctl(hUSBHOST_HID, &hid_iocb);

if (status != USBHOSTHID_OK)

{

message("Get report descriptor failed - code ");

number(status);

message(eol);

break;

}

// set idle

hid_iocb.reportID = USB_HID_REPORT_ID_ZERO;

hid_iocb.idleDuration = 0x20;

hid_iocb.ioctl_code = VOS_IOCTL_USBHOSTHID_SET_IDLE;

status = vos_dev_ioctl(hUSBHOST_HID, &hid_iocb);

if (status != USBHOSTHID_OK)

{

message("Set Idle failed - code ");

number(status);

message(eol);

break;

}

// get idle

hid_iocb.reportID = USB_HID_REPORT_ID_ZERO;

hid_iocb.get.data = &buf[0];

hid_iocb.ioctl_code = VOS_IOCTL_USBHOSTHID_GET_IDLE;

status = vos_dev_ioctl(hUSBHOST_HID, &hid_iocb);

if (status != USBHOSTHID_OK)

{

message("Get Idle failed - code ");

number(status);

message(eol);

Copyright © 2012 Future Technology Devices International Ltd. 400

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

break;

}

if (status == USBHOSTHID_OK)

{

while (1)

{

if (vos_dev_read(hUSBHOST_HID, buf, 8, &num_read) == USBHOSTHID_OK)

{

for (byteCount = 0; byteCount < num_read; byteCount++)

{

number(buf[byteCount]);

}

message(eol);

}

else

{

message("USB Read Failed - code ");

number(status);

message(eol);

break;

}

}

}

message("Disconnected!\r\n");

} // end of if connectStatus

vos_dev_close(hUSBHOST_HID);

close_drivers();

} while (1);

4.2.2.3 USB Slave Class Drivers

The USB Slave driver is designed to be flexible in order for layered drivers to add the functionality
required by devices adhering to both standard classes and user defined classes.

The layered driver for FTDI's own FT232 style of device is provided.

4.2.2.3.1 FT232 USB Slave Device

Driver Hierarchy

USBSlaveFT232 Driver hierarchy:

USBSlaveFT232 Driver

USB Slave Driver

VOS Kernel

USB Slave Hardware

Library Files

USBSlave.a

USBSlaveFT232.a

Header Files

USBSlave.h

USBSlaveFT232.h

Copyright © 2012 Future Technology Devices International Ltd. 401

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.3.1.1 FT232 Concepts

The FT232 USB Slave driver can be layered over a USB port that has been configured as a USB Slave
Port. At most, two FT232 devices can be supported, and a unique VOS_DEVICE handle is required to
access each device.

If a port is configured for use by the USB Host then it cannot be used by the USB Slave FT232.

Once an FT232 USB Slave driver is configured it cannot be reconfigured.

Each FT232 USB Slave driver instance will require a unique device number to register with the device
manager. So, at most two device numbers will be required per application.

If both USB Ports are configured as USB Slave ports, and both have FT232 USB Slave drivers layered
above them, then the application will have 2 driver handles when both ports are opened, one for
each FT232 USB Slave and effectively 2 device drivers active. They should be treated separately by
the application.

An application must call vos_dev_open() to obtain a VOS_DEVICE handle prior to accessing an FT232
USB Slave device. The handle is used for all subsequent accesses to the device.

An FT232 USB Slave driver instance is layered above a USB Slave port. An application must obtain
handles to both the USB Slave port and the USB Slave FT232 device, then attach the device to a
port, using IOCTL request VOS_IOCTL_USBSLAVEFT232_ATTACH to associate an FT232 USB Slave
device with a USB Slave port.

The FT232 has one IN endpoint and one OUT endpoint. An application calls the standard device
manager function vos_dev_read() to read data sent from a host on the OUT endpoint. An
application sends data to a host via the standard device manager function vos_dev_write(). The
FT232 USB Slave driver adds status bytes at the appropriate places in the data stream.

4.2.2.3.1.2 FT232 USB Slave Device Return Codes

All calls to the FT232 USB Slave driver will return one of the following status codes.

USBSLAVEFT232_OK

The command completed successfully.

USBSLAVEFT232_INVALID_PARAMETER

There was an error or problem with a parameter sent to the driver.

USBSLAVEFT232_ERROR
An unspecified error occurred.

4.2.2.3.1.3 FT232 USB Slave Device IOCTL Calls

The structure passed to the IOCTL request is the common structure shown in the topic Common
IOCTL Calls.

The following additional IOCTL request codes are supported by the FT232 USB Slave driver.

VOS_IOCTL_USBSLAVEFT232_ATTACH Attach to a USB Slave port

VOS_IOCTL_USBSLAVEFT232_DETACH Detach from a USB Slave port

VOS_IOCTL_USBSLAVEFT232_SET_LATENCY Set latency timer period

VOS_IOCTL_USBSLAVEFT232_SET_DESCRIPTORS Set user-specified descriptors

Description

Attach an FT232 driver instance to a USB Slave port.

Parameters

The handle of the USB Slave port to attach to is passed in the set.data field of the common_ioctl_cb_t

Copyright © 2012 Future Technology Devices International Ltd. 402

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

struct.

Returns

If the attach is successful, then the return code is USBSLAVEFT232_OK. Otherwise, an error code is
returned.

Example

VOS_HANDLE hA;

VOS_HANDLE hFT232;

common_ioctl_cb_t iocb;

// open USB Slave port A

hA = vos_dev_open(USBSA);

// open FT232

hFT232 = vos_dev_open(USBSFT232);

// attach FT232BM to USB Slave port A

iocb.ioctl_code = VOS_IOCTL_USBSLAVEFT232_ATTACH;

iocb.set.data = hA;

vos_dev_ioctl(hFT232,&iocb);

Description

Detach an FT232 driver instance from a USB Slave port.

Parameters

There are no parameters for this function.

Returns

There is no return value for this function.

Example

VOS_HANDLE hFT232;

common_ioctl_cb_t iocb;

// detach FT232BM from USB Slave port

iocb.ioctl_code = VOS_IOCTL_USBSLAVEFT232_DETACH;

vos_dev_ioctl(hFT232,&iocb);

Description

Set the latency timer period.

Parameters

The latency time is a 1-byte value passed in the set.data field of the common_ioctl_cb_t struct. Valid
latency times are in the range 2-255.

Returns

If the request is successful, then the return code is USBSLAVEFT232_OK. Otherwise, if an invalid
latency time is passed, USBSLAVEFT232_INVALID_PARAMETER is returned.

Example

VOS_HANDLE hFT232;

common_ioctl_cb_t iocb;

Copyright © 2012 Future Technology Devices International Ltd. 403

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

iocb.ioctl_code = VOS_IOCTL_USBSLAVEFT232_SET_LATENCY;

iocb.set.data = (void *) 40;

vos_dev_ioctl(hFT232,&iocb);

Description

Set user-specified descriptors for an FT232 device.

Parameters

A pointer to a usbslaveft232_ioctl_cb_descriptors_t struct is passed in the set.data field of the
common_ioctl_cb_t struct.

The format of a usbslaveft232_ioctl_cb_descriptors_t is as follows:

typedef struct _usbslaveft232_ioctl_cb_descriptors_t {

struct {

unsigned char use;

unsigned short idVendor;

unsigned short idProduct;

unsigned char iManufacturer;

unsigned char iProduct;

unsigned char iSerialNumber;

} device_descriptor;

struct {

unsigned char use;

unsigned char bmAttributes;

unsigned char bMaxPower;

} config_descriptor;

usb_deviceStringDescriptorZero_t *zero_string;

usb_deviceStringDescriptor_t *manufacturer_string;

usb_deviceStringDescriptor_t *product_string;

usb_deviceStringDescriptor_t *serial_number_string;

} usbslaveft232_ioctl_cb_descriptors_t;

Returns

If the request is successful, then the return code is USBSLAVEFT232_OK. Otherwise, an error code is
returned.

Example

VOS_HANDLE hFT232;

common_ioctl_cb_t iocb;

usbslaveft232_ioctl_cb_descriptors_t desc_cb;

unsigned char manu_desc[10] = {

10,

USB_DESCRIPTOR_TYPE_STRING,

0x41, 0x00,

0x43, 0x00,

0x4d, 0x00,

0x45, 0x00

};

// open FT232

hFT232 = vos_dev_open(USBSFT232);

// initialise descriptors

desc_cb.device_descriptor.idVendor = USB_VID_FTDI;

desc_cb.device_descriptor.idProduct = USB_PID_FTDI_FT232;

desc_cb.device_descriptor.iManufacturer = FT232_STRING_INDEX_MANUFACTURER;

desc_cb.device_descriptor.iProduct = FT232_STRING_INDEX_PRODUCT;

desc_cb.device_descriptor.iSerialNumber = FT232_STRING_INDEX_SERIAL_NUMBER;

desc_cb.device_descriptor.use = 1;

Copyright © 2012 Future Technology Devices International Ltd. 404

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

desc_cb.config_descriptor.bmAttributes = 0xa0;

desc_cb.config_descriptor.bMaxPower = 0x2d;

desc_cb.config_descriptor.use = 1;

desc_cb.manufacturer_string = (usb_deviceStringDescriptor_t *) manu_desc;

// set descriptors for FT232BM

iocb.ioctl_code = VOS_IOCTL_USBSLAVEFT232_SET_DESCRIPTORS;

iocb.set.data = &desc_cb;

vos_dev_ioctl(hFT232,&iocb);

Comments

See application note AN168, "Vinculum-II USB Slave Customizing an FT232 Device" for full details of
this request.

4.2.2.3.1.4 usbSlaveFt232_init()

Syntax

unsigned char usbslaveft232_init(unsigned char vos_dev_num,usbSlaveFt232_init_t *params);

Description

Initialises the USB Slave FT232 driver and registers the driver with the Device Manager. There are
two USB Slave ports, and the USB Slave FT232 driver can be layered over either or both ports.
However, the usbslaveft232_init() function must be called for each slave port used.

Parameters

vos_dev_num

The device number to use when registering this USB Slave FT232 device with the Device
Manager is passed in the vos_dev_num parameter.

params

The second parameter, params, is used to specify a buffer size for the receive and transmit
buffers. If the params pointer is NULL then the default buffer size of 128 bytes is used.

Returns

The function does not return any values.

Comments

The params parameter allows the buffer size allocated for the IN and OUT buffers to be specified and
must be of the form of the structure defined below:

typedef struct _usbSlaveFt232_init_t {

unsigned short in_ep_buffer_len;

unsigned short out_ep_buffer_len;

} usbSlaveFt232_init_t;

The function must be called twice to configure two USB Slave FT232 devices. If a port is configured by
the USB Host then it cannot be used for the USB Slave. Each instance of the USB Slave FT232 device
creates two threads.

4.2.2.4 SPI Peripheral Drivers

Many ICs and peripherals support SPI interfaces. VOS allows drivers to be layered on top of the SPI
Master driver in the same way that USB class drivers can be layered on top of the USB host and USB
slave drivers, thus allowing drivers to be created for VOS applications to communicate with these
external peripherals via the SPI Master.

This section documents FTDI supplied drivers for external SPI peripherals

Copyright © 2012 Future Technology Devices International Ltd. 405

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.4.1 ADC (MCP3004/MCP3008) Driver

The Microchip MCP3008 8-channel analog-digital converter (ADC) is available on the Vinco board and
can be controlled via the SPI Master interface. A driver is supplied with the Vinculum toolchain to
allow applications easy access to the ADC. The driver is also compatible with the Microchip MCP3004
4-channel ADC.

Driver Hierarchy

ADC_MCP3008 Driver hierarchy:

ADC MCP3008 Driver

SPI Master Driver

VOS Kernel

SPI Master Hardware

Library Files

SPIMaster.a

ADC_MCP3008.a

Header Files

SPIMaster.h

ADC_MCP3008.h

4.2.2.4.1.1 ADC_MCP3008 Return Codes

Status Codes

All calls to the ADC_MCP3008 driver will return one of the following status codes.

ADC_MCP3008_OK

The command completed successfully.

ADC_MCP3008_INVALID_PARAMETER

An invalid parameter was passed to the driver.

ADC_MCP3008_INVALID_IOCTL_CODE

The IOCTL code is invalid for this driver.

ADC_MCP3008_ERROR

An unspecified error occurred.

ADC_MCP3008_FATAL_ERROR

An error has occurred that will prevent the driver from functioning properly.

4.2.2.4.1.2 ADC_MCP3008 IOCTL Calls

Calls to the ADC_MCP3008 driver's IOCTL method take the form:

typedef struct _adc_mcp3008_ioctl_cb_t

{

 unsigned char ioctl_code;

 adc_mcp3008_ioctl_cb_attach_t* attach_info;

 unsigned char channel;

 unsigned char mode;

 unsigned short value;

} adc_mcp3008_ioctl_cb_t;

The following IOCTL request codes are supported by the ADC_MCP3008 driver.

VOS_IOCTL_ADC_MCP3008_ATTACH Attach the ADC_MCP3008 driver to the SPI Master
driver.

Copyright © 2012 Future Technology Devices International Ltd. 406

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_ADC_MCP3008_DETACH Detach the ADC_MCP3008 driver from the SPI
Master driver.

VOS_IOCTL_ADC_MCP3008_READ_CHANNEL Read a specified ADC channel.

Description

Attaches the ADC_MCP3008 driver to the SPI Master.

Parameters

The SPI Master handle and the required chip select pin must be passed in a structure using the
attach_info member of the IOCTL structure.

typedef struct _adc_mcp3008_ioctl_cb_attach_t

{

 VOS_HANDLE spi_master_handle;

 unsigned char chip_select_identifier;

} adc_mcp3008_ioctl_cb_attach_t;

Returns

ADC_MCP3008_OK if the attach is successful
ADC_MCP3008_INVALID_PARAMETER if the parameters are incorrect

Example

See example in VOS_IOCTL_ADC_MCP3008_READ_CHANNEL.

Description

Detaches the ADC_MCP3008 driver from the SPI Master.

Parameters

None.

Returns

ADC_MCP3008_OK when the detach is successful (always)

Example

See example in VOS_IOCTL_ADC_MCP3008_READ_CHANNEL.

Description

Reads the current value of a specified channel from the MCP3008 or MCP3004 ADC.

Parameters

The channel number to read and the ADC mode are specified in the channel and mode fields of the
IOCTL structure respectively. The value member holds the value read from the ADC when the IOCTL
call returns successfully. Valid channel numbers to read from are in the range 0-7 for the MCP3008
ADC and in the range 0-3 for the MCP3004 ADC.

The driver cannot distinguish between the MCP3008 and MCP3004 parts, so if a channel in the range
4-7 is requested for the MCP3004 it will return the value for the requested channel number -4 (i.e. a
request to read channel 4 from the MCP3004 will return the value for channel 0).

Returns

ADC_MCP3008_OK if the attach is successful
ADC_MCP3008_INVALID_PARAMETER if the parameters are incorrect

Copyright © 2012 Future Technology Devices International Ltd. 407

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

VOS_HANDLE hSPIm, hAdc;

adc_mcp3008_ioctl_cb_t adc_iocb;

adc_mcp3008_ioctl_cb_attach_t adc_attach_info;

unsigned short ADC_Value;

// Setup SPI Master

// open SPI Master and get a handle

hSPIm = vos_dev_open(VOS_DEV_SPIM);

// enable DMA

spim_iocb.ioctl_code = VOS_IOCTL_COMMON_ENABLE_DMA;

vos_dev_ioctl(hSPIm,&spim_iocb);

// set clock phase

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SCK_CPHA;

spim_iocb.set.param = SPI_MASTER_SCK_CPHA_1; // Data will be clocked in to ADC on rising edge

vos_dev_ioctl(hSPIm,&spim_iocb);

// set clock polarity

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SCK_CPOL;

spim_iocb.set.param = SPI_MASTER_SCK_CPOL_1; // Clock will be high in idle

vos_dev_ioctl(hSPIm,&spim_iocb);

// set data order

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_DATA_ORDER;

spim_iocb.set.param = SPI_MASTER_DATA_ORDER_MSB; // MSB first

vos_dev_ioctl(hSPIm,&spim_iocb);

// set clock rate

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SET_SCK_FREQUENCY;

spim_iocb.set.spi_master_sck_freq = 3000000;

vos_dev_ioctl(hSPIm,&spim_iocb);

// Set data delay

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SET_DATA_DELAY;

spim_iocb.set.param = 0;

vos_dev_ioctl(hSPIm,&spim_iocb);

// set initial state of chip select 0 pin

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SS_0;

spim_iocb.set.param = SPI_MASTER_SS_DISABLE;

vos_dev_ioctl(hSPIm,&spim_iocb);

// set initial state of chip select 1 pin

spim_iocb.ioctl_code = VOS_IOCTL_SPI_MASTER_SS_1;

spim_iocb.set.param = SPI_MASTER_SS_DISABLE;

vos_dev_ioctl(hSPIm,&spim_iocb);

// open ADC driver

hAdc = vos_dev_open(VOS_DEV_ADC);

// attach ADC driver to SPI master

adc_iocb.ioctl_code = VOS_IOCTL_ADC_MCP3008_ATTACH;

adc_attach_info.spi_master_handle = hSPIm;

adc_attach_info.chip_select_identifier = ADC_MCP3008_CHIP_SELECT_1;

adc_iocb.attach_info = &adc_attach_info;

vos_dev_ioctl(hAdc,&adc_iocb);

// Read channel 0 of the ADC in single-ended mode

adc_iocb.ioctl_code = VOS_IOCTL_ADC_MCP3008_READ_CHANNEL;

adc_iocb.mode = ADC_MCP3008_MODE_SINGLE_ENDED;

adc_iocb.channel = 0;

vos_dev_ioctl(hAdc,&adc_iocb);

Copyright © 2012 Future Technology Devices International Ltd. 408

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// the 10-bit ADC value will be returned in the value member of the IOCTL control block

ADC_Value = adc_iocb.value;

// detach ADC driver from SPI master

adc_iocb.ioctl_code = VOS_IOCTL_ADC_MCP3008_DETACH;

vos_dev_ioctl(hAdc,&adc_iocb);

4.2.2.4.1.3 adc_mcp3008_init()

Syntax

unsigned char adc_mcp3008_init(unsigned char devNum)

Description

Initialise the ADC_MCP3008 driver and registers the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

ADC_MCP3008_OK if the attach is successful
ADC_MCP3008_FATAL_ERROR if there are insufficient resources to initialise the driver.

Comments

The driver must be initialised by calling this function before it can be opened and attached to the SPI
Master.

4.2.2.4.2 SD Card Driver

The SD card driver provides an interface between a file system and a standard SD or SDHC card.

This driver is used by the FAT File System class to access disks. It requires the SPI Master hardware
driver.

SD card is a Mass Storage Interface (MSI) driver and uses the "msi.h" header file for commonality of
IOCTL Calls and Return Codes with other similar drivers.

The sd_init() function must be called to initialize the driver before the kernel scheduler is started
with vos_start_scheduler().

The SD card driver needs to be attached to the SPI Master device to function using the
MSI_IOCTL_SD_CARD_ATTACH IOCTL call specifying a valid handle for the SPI Master driver and
optionally GPIO parameters for enabling the driver to handle the SD card write protect and card
detection features.

Driver Hierarchy

SD Card Driver hierarchy:

SD Card Driver

SPI Master Driver

VOS Kernel

SPI Master Hardware

Library Files

SPIMaster.a

SDCard.a

Copyright © 2012 Future Technology Devices International Ltd. 409

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Header Files

SPIMaster.h

SDCard.h

MSI.h

4.2.2.4.2.1 SD Card Return Codes

Status Codes

All calls to the SD card driver will return one of the following status codes.

SD_OK

The command completed successfully.

SD_INVALID_PARAMETER

An invalid parameter was passed to the driver.

SD_INITIALIZATION_FAILED

The initialization sequence for the card has failed.

SD_INVALID_CARD

The card that has been inserted is not of a supported type.

SD_CMD_FAILED

The requested command has failed.

SD_READ_FAILED

The requested read operation has failed.

SD_WRITE_FAILED

The requested write operation has failed.

SD_FRAME_ERROR

A frame error has been detected.

SD_WRITE_PROTECTED

The SD card is write protected and cannot be written to.

SD_FATAL_ERROR

An error has occurred that will prevent the driver from functioning properly.

4.2.2.4.2.2 SD Card Read and Write Operations

Refer to the Mass Storage Interface Read and Write Operations topic for read and write transactions
on the SD card driver.

The sector size, and hence the buffer multiple size, for the SD card driver is 512 bytes.

Note that if a card is write protected and a GPIO port is being used to check the write protect (WP)
pin then the write method can return SD_WRITE_PROTECTED.

4.2.2.4.2.3 SD Card IOCTL Calls

Calls to the SD card driver's IOCTL method take the form:

typedef struct _msi_ioctl_cb_t {

unsigned char ioctl_code;

// read buffer

unsigned char *get;

// write buffer

unsigned char *set;

} msi_ioctl_cb_t;

The following MSI IOCTL request codes are supported by the SD card driver.

MSI_IOCTL_SD_CARD_INIT Initialises the SD card into SPI mode

MSI_IOCTL_SD_GET_CARD_TYPE Retrieve the card type

Copyright © 2012 Future Technology Devices International Ltd. 410

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

MSI_IOCTL_SD_CARD_DETECT Checks the state of the card detect (CD) pin

MSI_IOCTL_SD_CARD_WAIT_INSERT Waits for the state of the card detect (CD) pin to
indicate that a card has been inserted

MSI_IOCTL_SD_WRITE_PROTECT Checks the state of the write protect (WP) pin

The SD card driver also supports the following transport specific IOCTL requests.

MSI_IOCTL_SD_CARD_ATTACH Attaches the SD card driver to the SPI Master and
optionally to a GPIO port

MSI_IOCTL_SD_CARD_DETACH Detaches the SD card driver

Description

Attaches the SD card driver to the SPI Master and optionally to a GPIO port.

Parameters

The SPI Master handle must be passed in a structure using the set member of the msi_ioctl_cb_t
IOCTL structure. The GPIO handle is an optional parameter for allowing the use of the card detect
and write protect signals. If a GPIO handle is specified, the WP_Bit and CD_Bit values specify the bit
of the GPIO port to be used for write protect and card detection respectively. If no GPIO handle is
specified the value must be NULL.

typedef struct _sdcard_ioctl_cb_attach_t

{

 VOS_HANDLE spi_master_handle;

 VOS_HANDLE gpio_handle;

 unsigned char WP_Bit;

 unsigned char CD_Bit;

} sdcard_ioctl_cb_attach_t;

Returns

SD_OK if the attach is successful
SD_INVALID_PARAMETER if the parameters are incorrect

Example

See example in SD Card Example

Description

Detaches the SD card driver from the SPI Master and GPIO driver.

Parameters

None.

Returns

SD_OK when the detach is successful (always)

Example

si_cb.ioctl_code = MSI_IOCTL_SD_CARD_DETACH;

vos_dev_ioctl(hSDCard, &msi_cb);

if(*msi_cb.get != SD_OK) {

 return;

}

Description

Initializes the SD card in to SPI mode.

Copyright © 2012 Future Technology Devices International Ltd. 411

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

There are no parameters passed to this IOCTL.

Returns

SD_OK if the initialization is successful
SD_INITIALIZATION_FAILED if the initialization failed

Example

See example in SD Card Example

Description

Returns the type of the SD card that is connected.

Parameters

The function returns the card type in the get member of the msi_ioctl_cb_t IOCTL structure. Valid
card types are:

SD_INV

Invalid SD Card (0xFF)

SD_V1

SD card v1.0 or less (0x01)

SD_V2

SD card v2.0 (0x02)

SD_HC

SD high capacity card (0x03)

SD_MMC

MultiMediaCard - not SD card (0x04)

Returns

This IOCTL always returns SD_OK. If a card has not been successfully initialized, the card type will
be returned as SD_INV.

Example

See example in SD Card Example

Description

Returns the state of the SD card detect (CD) pin.

Parameters

The function returns the card detect state in the get member of the msi_ioctl_cb_t IOCTL
structure. If a card is inserted, the get member will have the value SD_CARD_PRESENT. If a card has
not been detected, the get member will be 0.

Returns

SD_OK if the IOCTL request was successful.

SD_INVALID_PARAMETER if the GPIO handle has not been attached during the call to
MSI_IOCTL_SD_CARD_ATTACH.

Example

See example in SD Card Example

Copyright © 2012 Future Technology Devices International Ltd. 412

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Waits until an SD card has been inserted. This IOCTL monitors the SD card detect (CD) pin to do
this.

Parameters

There are no parameters passed to this IOCTL.

Returns

SD_OK if the IOCTL request was successful.

SD_INVALID_PARAMETER if the GPIO handle has not been attached during the call to
MSI_IOCTL_SD_CARD_ATTACH.

Example

msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_WAIT_INSERT;

vos_dev_ioctl(hSDCard, &msi_cb)

if(*msi_cb.get != SD_CARD_PRESENT) {

 return;

}

Description

Returns the state of the SD card write protect (WP) pin.

Parameters

The function returns the card write protect state in the get member of the msi_ioctl_cb_t IOCTL
structure. If the card is write protected, the get member will have the value
SD_CARD_WRITE_PROTECTED. If the card is not write protected, the get member will be 0.

Returns

SD_OK if the IOCTL request was successful.

SD_INVALID_PARAMETER if the GPIO handle has not been attached during the call to
MSI_IOCTL_SD_CARD_ATTACH.

Example

See example in SD Card Example

4.2.2.4.2.4 sd_init()

Syntax

unsigned char sd_init(unsigned char devNum)

Description

Initialise the SD card driver and registers the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

SD_OK if the attach is successful
SD_FATAL_ERROR if there are insufficient resources to initialise the driver.

Copyright © 2012 Future Technology Devices International Ltd. 413

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Comments

The driver must be initialised by calling this function before it can be opened and attached to the SPI
Master and GPIO.

4.2.2.4.2.5 SD Card Example

#define NUMBER_OF_DEVICES 4

#define VOS_DEV_SPIMASTER 0

#define VOS_DEV_SDCARD 1

#define VOS_DEV_FTFS 2

#define VOS_DEV_GPIO 3

// ***

// SD Card example

// This application uses the SD Card and FAT drivers to open a file on

// an SD card and write the string "Hello World!" to the file

//

// Expected Output:

// Hello World!Hello World!

// ***

#include "vos.h"

#include "devman.h"

#include "IOMUX.h"

#include "USBHost.h"

#include "msi.h"

#include "fat.h"

#include "gpio.h"

#include "sdcard.h"

#include "SPIMaster.h"

#include "string.h"

#include "stdio.h"

/* Forward Declarations */

void firmware(void);

unsigned char IOMux_Setup();

vos_tcb_t *tcbFirmware;

//==

// Application Functions

//==

void main(void)

{

 // SPIMaster context structure

 spimaster_context_t spimasterCtx;

 // GPIO context

 gpio_context_t gpioCtx;

 /* call VOS initialisation routines */

 vos_init(50, VOS_TICK_INTERVAL, NUMBER_OF_DEVICES);

 vos_set_clock_frequency(VOS_48MHZ_CLOCK_FREQUENCY);

 //***

 // INITIALISE DRIVERS

 //***

 spimasterCtx.buffer_size = VOS_BUFFER_SIZE_512_BYTES;

 spimaster_init(VOS_DEV_SPIMASTER, &spimasterCtx);

 sd_init(VOS_DEV_SDCARD);

 fatdrv_init(VOS_DEV_FTFS);

 gpioCtx.port_identifier = GPIO_PORT_B;

 gpio_init(VOS_DEV_GPIO, &gpioCtx);

 /* create threads for firmware application (no parameters) */

 tcbFirmware = vos_create_thread(50, 8192, firmware, 0);

Copyright © 2012 Future Technology Devices International Ltd. 414

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 /* Device IOMux Settings */

 IOMux_Setup();

 /* start VOS scheduler */

 vos_start_scheduler();

main_loop:

 goto main_loop;

}

unsigned char IOMux_Setup()

{

 unsigned char packageType = vos_get_package_type();

 if (packageType == VINCULUM_II_64_PIN)

 {

 // SPIMaster to V2EVAL board pins

 vos_iomux_define_output(19 ,IOMUX_OUT_SPI_MASTER_CLK); // SCLK

 vos_iomux_define_output(20,IOMUX_OUT_SPI_MASTER_MOSI); // MOSI

 vos_iomux_define_input(22,IOMUX_IN_SPI_MASTER_MISO); // MISO

 vos_iomux_define_output(23,IOMUX_OUT_SPI_MASTER_CS_0); // CS

 vos_iomux_define_input(16,IOMUX_IN_GPIO_PORT_B_1); // Card Detect

 vos_iomux_define_input(15,IOMUX_IN_GPIO_PORT_B_0); // Write Protect

 }

 return 0;

}

void firmware(void)

{

 unsigned char card_type;

 unsigned char *s = "Hello World!";

 VOS_HANDLE hSpiMaster, hSDCard, hFat, hGPIO;

 msi_ioctl_cb_t msi_cb;

 gpio_ioctl_cb_t gpio_iocb;

 sdcard_ioctl_cb_attach_t sd_cb;

 fatdrv_ioctl_cb_attach_t fat_cb;

 fat_ioctl_cb_t fat_iocb;

 // Handle for the file...

 FILE *file;

 // Open the device drivers...

 hGPIO = vos_dev_open(VOS_DEV_GPIO);

 hSpiMaster = vos_dev_open(VOS_DEV_SPIMASTER);

 hSDCard = vos_dev_open(VOS_DEV_SDCARD);

 hFat = vos_dev_open(VOS_DEV_FTFS);

 // Set the GPIO pins to input...

 gpio_iocb.ioctl_code = VOS_IOCTL_GPIO_SET_MASK;

 gpio_iocb.value = 0x00;

 vos_dev_ioctl(hGPIO, &gpio_iocb);

 // Set-up the context for the SD Card driver....

 sd_cb.spi_master_handle = hSpiMaster;

 sd_cb.gpio_handle = hGPIO;

 sd_cb.WP_Bit = GPIO_PIN_0;

 sd_cb.CD_Bit = GPIO_PIN_1;

 msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_ATTACH;

 msi_cb.set = &sd_cb;

 // Attach GPIO and SPI Master drivers to the SD Card...

 vos_dev_ioctl(hSDCard, &msi_cb);

 // Check there is a card connected...

 msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_DETECT;

Copyright © 2012 Future Technology Devices International Ltd. 415

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 vos_dev_ioctl(hSDCard, &msi_cb);

 if(*msi_cb.get != SD_CARD_PRESENT) {

 return;

 }

 // Check the card isn't write protected...

 msi_cb.ioctl_code = MSI_IOCTL_SD_WRITE_PROTECT;

 vos_dev_ioctl(hSDCard, &msi_cb);

 if(*msi_cb.get == SD_CARD_WRITE_PROTECTED) {

 return;

 }

 // Inititalize the SD Card in SPI mode...

 msi_cb.ioctl_code = MSI_IOCTL_SD_CARD_INIT;

 vos_dev_ioctl(hSDCard, &msi_cb);

 // Check the version of the SD Card connected...

 msi_cb.ioctl_code = MSI_IOCTL_SD_GET_CARD_TYPE;

 vos_dev_ioctl(hSDCard, &msi_cb);

 card_type = *msi_cb.get;

 // Set-up the context for the FAT driver...

 fat_iocb.ioctl_code = FAT_IOCTL_FS_ATTACH;

 fat_iocb.set = &fat_cb;

 fat_cb.msi_handle = hSDCard;

 fat_cb.partition = 0;

 // Attach the SD Card driver to the FAT driver...

 vos_dev_ioctl(hFat, &fat_iocb);

 // Attach the FAT driver to the FAT API...

 fsAttach(hFat);

 // Open a file for writing...

 file = fopen("TEST.TXT", "w+");

 // Write a string to the file on the SD Card...

 fwrite(s, 12, sizeof(char), file);

 fseek(file, 0, FAT_SEEK_SET);

 // Read a string from the SD Card...

 fread(s, 12, sizeof(char), file);

 fseek(file, 12, FAT_SEEK_SET);

 // Write the same string to the end of the file...

 fwrite(s, 12, sizeof(char), file);

 fclose(file);

 // Expected Output:

 // Hello World!Hello World!

 return;

}

4.2.2.4.3 RTC (PCF2123) Driver

The NXP PCF2123 real time clock is available on the Vinco - Ethernet/MP3/RTC shield and can be
controlled using the SPI Master interface. A driver is supplied with the Vinculum II toolchain to allow
user applications access to the RTC shield. The data sheet for the RTC is located here.

To allow communication with the RTC driver on the RTC shield the slave select signal from the SPI
Master must be hard coded to GPIO_Port_A_1. All slave select operations are controlled within the
driver before and after read/write transactions.

Driver Hierarchy

RTC Driver hierarchy:

RTC PCF2123 Driver

SPI Master Driver

http://www.nxp.com/documents/data_sheet/PCF2123.pdf

Copyright © 2012 Future Technology Devices International Ltd. 416

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS Kernel

SPI Master Hardware

Library Files

SPIMaster.a

RTC.a

Header Files

SPIMaster.h

RTC.h

4.2.2.4.3.1 RTC Return Codes

Status Codes

All calls to the RTC driver will return one of the following status codes.

RTC_OK

The command completed successfully.

RTC_INVALID_PARAMETER

An invalid parameter was passed to the driver.

RTC_CLK_STOPPED

The internal clock is not running

RTC_OSC_STOPPED

The internal oscillator is not running.

RTC_RESET_FAILED

Failed to perform a software reset on the device.

SD_FATAL_ERROR

An error has occurred that will prevent the driver from functioning properly.

4.2.2.4.3.2 RTC IOCTL Calls

Calls to the RTC driver's IOCTL method take the form:

typedef struct rtc_ioctl_cb_t {

unsigned char ioctl_code;

// read buffer

unsigned char *get;

// write buffer

unsigned char *set;

} rtc_ioctl_cb_t;

The following RTC IOCTL request codes are supported by the RTC driver.

RTC_IOCTL_RESET Reset the device.

RTC_IOCTL_SET_TIME Set the date and time of the RTC.

RTC_IOCTL_GET_TIME Get the date and time of the RTC.

RTC_IOCTL_GET_TIME_MODE Returns the mode of the RTC, either 24hr or 12hr
mode.

RTC_IOCTL_SET_TIME_MODE Sets the RTC in either 24hr or 12hr mode.

RTC_IOCTL_CHECK_CLK_RUNNING Checks to see if the RTC clock is running.

RTC_IOCTL_SET_ALARM Sets the alarm date and time and starts the alarm.

RTC_IOCTL_GET_ALARM Gets the date and time the alarm is set for.

RTC_IOCTL_CANCEL_ALARM Cancels the currently set alarm.

RTC_IOCTL_START_COUNTDOWN Starts a countdown timer that will trigger and

Copyright © 2012 Future Technology Devices International Ltd. 417

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

interrupt when the count equals 0.

RTC_IOCTL_CANCEL_COUNTDOWN Cancels the countdown timer.

RTC_IOCTL_START_MIN_INTERRUPT Starts the minute alarm that will trigger an interrupt
every minute.

RTC_IOCTL_STOP_MIN_INTERRUPT Cancels the minute alarm.

RTC_IOCTL_START_SEC_INTERRUPT Starts the second alarm that will trigger an interrupt
every second.

RTC_IOCTL_STOP_SEC_INTERRUPT Cancels the second alarm.

The RTC driver also supports the following transport specific IOCTL requests.

RTC_IOCTL_ATTACH Attaches the RTC driver to the SPI Master and to a
GPIO port for interrupt handling.

RTC_IOCTL_DETACH Detaches the RTC driver from the SPI Master and
GPIO.

Description

Attaches the RTC driver to the SPI Master and to GPIO Port B for interrupt handling.

Parameters

The SPI Master handle must be passed in a structure using the set member of the rtc_ioctl_cb_t
IOCTL structure. The GPIO Port B handle is used internally by the RTC driver to trigger interrupts on
state changes of the RTC interrupt pin and is passed in the gpio_int_handle member. gpio_int_pin
is the GPIO signal that is connected to the INT pin on the RTC chip.

For spi_master_dma_mode please refer to the SPI Master driver section.

typedef struct _rtc_ioctl_cb_attach_t

{

VOS_HANDLE spi_master_handle; // Handle to the SPI Master Driver.

unsigned char spi_master_dma_mode; // DMA mode used by the SPI Master Driver.

unsigned char spi_ss; // SPI Slave Select line.

VOS_HANDLE gpio_int_handle; // Handle to GPIO Port B.

unsigned char gpio_int_pin; // Pin connected to the INT# signal on the RTC.

} rtc_ioctl_cb_attach_t;

Returns

RTC_OK if the attach is successful
RTC_INVALID_PARAMETER if the parameters are incorrect

Example

// Attach the SPI Master and the RTC driver...

atInfo.spi_master_handle = hSpiMaster;

atInfo.spi_master_dma_mode = DMA_ACQUIRE_AS_REQUIRED;

atInfo.spi_ss = 0; // Slave Select line to use...

atInfo.gpio_int_handle = hGPIO_INT;

atInfo.gpio_int_pin = GPIO_PIN_2;

// Attach to driver...

rtc_iocb.ioctl_code = RTC_IOCTL_ATTACH;

rtc_iocb.set = &atInfo;

vos_dev_ioctl(hRTC, &rtc_iocb);

Description

Detaches the RTC driver from the SPI Master and GPIO driver.

Copyright © 2012 Future Technology Devices International Ltd. 418

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

None.

Returns

RTC_OK when the detach is successful (always)

Description

Performs a software reset of the RTC and makes sure that the device is functioning correctly.

After a reset the device is set in 24hr mode.

Parameters

There are no parameters passed to this IOCTL.

Returns

RT_OK if the initialization is successful
RTC_FATAL_ERROR if the initialization failed

Example

// Reset the RTC...

rtc_iocb.ioctl_code = RTC_IOCTL_RESET;

vos_dev_ioctl(hRTC, &rtc_iocb);

Description

Sets the date and time of the RTC.

Parameters

A rtc_time structure containing the required date and time is passed to this function in the set
member of the rtc_ioctl_cb_t.

typedef struct _rtc_time {

char second;

char minute;

char hour;

char am_pm;// If the clock is in 12hr mode use this bit to specify am or pm. Otherwise 0.

char day;

char weekday;

char month;

char year;

} rtc_time;

am_pm is only applicable when the clock is in 12hr mode, achieved using the
RTC_IOCTL_SET_TIME_MODE. Otherwise it should be set to zero.

Returns

RT_OK (always)

Example

// Set the time

time.second = 0;

time.minute = 0;

time.hour = 0;

time.day = 25;

time.weekday = SUNDAY;

time.month = DECEMBER;

time.year = 11;

rtc_iocb.ioctl_code = RTC_IOCTL_SET_TIME;

Copyright © 2012 Future Technology Devices International Ltd. 419

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

rtc_iocb.set = &time;

vos_dev_ioctl(hRTC, &rtc_iocb);

Description

Gets the current date and time of the RTC.

Parameters

A rtc_time structure containing the date and time is returned from this function in the get member
of the rtc_ioctl_cb_t.

typedef struct _rtc_time {

char second;

char minute;

char hour;

char am_pm;// If the clock is in 12hr mode use this bit to specify am or pm. Otherwise 0.

char day;

char weekday;

char month;

char year;

} rtc_time;

am_pm is only applicable when the clock is in 12hr mode, achieved using the
RTC_IOCTL_SET_TIME_MODE.

Returns

RT_OK (always)

Example

// Get the time

rtc_iocb.ioctl_code = RTC_IOCTL_GET_TIME;

rtc_iocb.get = &time;

vos_dev_ioctl(hRTC, &rtc_iocb);

Description

Gets the current mode of the RTC, 12hr or 24hr. 12hr and 24hr are defined within the RTC.h header
file.

Parameters

The current mode is returned in the get member of the rtc_ioctl_cb_t structure.

Returns

RT_OK (always)

Example

// Set 24hr mode...

rtc_mode = MODE_24HOUR;

rtc_iocb.ioctl_code = RTC_IOCTL_SET_TIME_MODE;

rtc_iocb.set = &rtc_mode;

vos_dev_ioctl(hRTC, &rtc_iocb);

Description

Sets the current mode of the RTC, 12hr or 24hr. 12hr and 24hr are defined within the RTC.h header
file.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 420

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The required mode is passed in the set member of the rtc_ioctl_cb_t structure.

Returns

RT_OK (always)

Description

Checks to make sure that the clock on the RTC is running.

Parameters

The state of the clock is returned in the get member of the rtc_ioctl_cb_t structure.

Returns

RT_OK if the clock is running.

RTC_OSC_STOPPED the internal clock on the RTC is not running.

Description

Sets the date and time of an alarm and starts the alarm. This function blocks until the time of the
RTC matches the time passed to this function and the timer interrupt is triggered.

Parameters

A rtc_time structure containing the required date and time of the alarm is passed to this function in
the set member of the rtc_ioctl_cb_t.

typedef struct _rtc_time {

char second;

char minute;

char hour;

char am_pm;// If the clock is in 12hr mode use this bit to specify am or pm. Otherwise 0.

char day;

char weekday;

char month;

char year;

} rtc_time;

am_pm is only applicable when the clock is in 12hr mode, achieved using the
RTC_IOCTL_SET_TIME_MODE. Otherwise it should be set to zero.

Returns

RT_OK (always)

Description

Gets the date and time that is currently set in the alarm registers.

Parameters

A rtc_time structure containing the date and time of the alarm is returned from this function in the
get member of the rtc_ioctl_cb_t.

typedef struct _rtc_time {

char second;

char minute;

char hour;

char am_pm;// If the clock is in 12hr mode use this bit to specify am or pm. Otherwise 0.

char day;

char weekday;

char month;

char year;

Copyright © 2012 Future Technology Devices International Ltd. 421

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

} rtc_time;

am_pm is only applicable when the clock is in 12hr mode, achieved using the
RTC_IOCTL_SET_TIME_MODE. Otherwise it will be set to zero.

Returns

RT_OK (always)

Description

Cancels the next alarm set on the RTC, effectively unblocking a call to the RTC_IOCTL_SET_ALARM
IOCTL.

Parameters

No parameters required.

Returns

RT_OK (always)

Description

Starts a countdown timer that will trigger an interrupt when the length value counts down to zero.
This function will block until the interrupt is triggered.

Parameters

The length in seconds of the countdown timer is passed in the set member of the rtc_ioctl_cb_t
structure. The maximum countdown timer is 4h 15min.

Returns

RT_OK countdown timer set.

RTC_INVALID_PARAMETER the countdown is zero or larger than the allowed maximum.

Example

// Start countdown timer

rtc_iocb.ioctl_code = RTC_IOCTL_START_COUNTDOWN;

rtc_iocb.set = &countdownTimer;

vos_dev_ioctl(hRTC, &rtc_iocb);

Description

Cancels the next countdown timer set on the RTC, effectively unblocking a call to the
RTC_IOCTL_START_COUNTDOWN IOCTL.

Parameters

No parameters required.

Returns

RT_OK (always)

Description

Starts a minute interrupt that will trigger an interrupt once per minute. This function will block until
the interrupt is triggered.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 422

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

No parameters required.

Returns

RT_OK (always)

Description

Stops the minute interrupt.

Parameters

No parameters required.

Returns

RT_OK (always)

Description

Starts a second interrupt that will trigger an interrupt once per second. This function will block until
the interrupt is triggered.

Parameters

No parameters required.

Returns

RT_OK (always)

Description

Stops the second interrupt.

Parameters

No parameters required.

Returns

RT_OK (always)

4.2.2.4.3.3 rtc_init()

Syntax

unsigned char rtc_init(unsigned char devNum)

Description

Initialise the RTC driver and registers the driver with the Device Manager.

Parameters

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

RTC_OK if the attach is successful
RTC_FATAL_ERROR if there are insufficient resources to initialise the driver.

Comments

Copyright © 2012 Future Technology Devices International Ltd. 423

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The driver must be initialised by calling this function before it can be opened and attached to the SPI
Master and GPIO.

4.2.2.5 Ethernet Driver

The Ethernet driver consists of one driver instance. The Ethernet driver will build a list of sockets
available. The sockets are searchable by an application. The Ethernet_init() function must be called
to initialize the driver before the kernel scheduler is started with vos_start_scheduler(). The
Ethernet driver supports only "WIZnet Ethernet chip W5100".

Driver Hierarchy

Ethernet Driver hierarchy:

Ethernet Driver

VOS Kernel

Ethernet Hardware

Library Files

Ethernet.a

Header Files

Ethernet.h

4.2.2.5.1 Ethernet Return Codes

Status Codes

All calls to the Ethernet driver will return one of the following status codes.

ETHERNET_STATUS_OK

The command completed successfully.

ETHERNET_STATUS_SOCKET_CREATION_FAILED

There was an error or problem with the socket creation.

ETHERNET_STATUS_LISTEN_FAILED

There was an error or problem in the socket during the listen phase.

ETHERNET_STATUS_INVALID_SERVER_ADDRESS

There was an error in the server address format or server address does not exist.

ETHERNET_STATUS_SENDING_FAILED

There was an error during ethernet packet transmit to the remote device.

ETHERNET_STATUS_RECEIVING_FAILED

There was an error during ethernet packet receive from the remote device.

ETHERNET_STATUS_INVALID_IOCTL_CODE

There was a non-supported IOCTL sent to the driver.

ETHERNET_STATUS_INVALID_PARAMETER

There was a parameter not supported sent to the driver.

ETHERNET_STATUS_FATAL_ERROR

An unspecified error occurred.

Copyright © 2012 Future Technology Devices International Ltd. 424

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.5.2 Ethernet IOCTL Calls

Calls to the Ethernet IOCTL interface use the following structure:

typedef struct _ethernet_ioctl_cb_t

{

uint8 ioctl_code;

ethernet_device_t handle;

SOCKET socket_number;

uint8 interrupt_type;

uint8 interrupt_mask;

uint8* mac_addr; // local device mac address

uint8* gtw_addr; // local device gateway address

uint8* sub_mask; // local device subnet mask

uint8* ip_addr; // local device ip address

uint16 eth_port; // local device ethernet port number

uint8 protocol;

uint8 retry;

uint16 timeout;

uint16 rcvd_bytes;

uint8* read_buffer;

uint16 read_buf_len;

uint8* write_buffer;

uint16 write_buf_len;

uint8* remote_dev_ip_addr; // remote device ip address

uint16* remote_dev_port; // remote device port

uint8 sock_status;

uint16 txFreeSize;

uint16 rxRcvdSize;

VOS_HANDLE spi_master_handle;

uint8 chip_select_identifier;

} ethernet_ioctl_cb_t;

The following IOCTL request codes are supported by the Ethernet driver.

VOS_IOCTL_ETHERNET_W5100_INIT Initialize W5100 registers

VOS_IOCTL_ETHERNET_SET_GATEWAY_IP Assign a Gateway Address

VOS_IOCTL_ETHERNET_GET_GATEWAY_IP Get the current Gateway Address

VOS_IOCTL_ETHERNET_SET_SUBNET_MASK Assign a Subnet Mask

VOS_IOCTL_ETHERNET_GET_SUBNET_MASK Obtain the current Subnet Mask

VOS_IOCTL_ETHERNET_SET_MAC_ADDRESS Assign a MAC Address

VOS_IOCTL_ETHERNET_GET_MAC_ADDRESS Obtain the MAC Address

VOS_IOCTL_ETHERNET_SET_IP_ADDRESS Assign an IP Address

VOS_IOCTL_ETHERNET_GET_IP_ADDRESS Obtain the IP Address

VOS_IOCTL_ETHERNET_SET_RETRANSMISSION
_TIME

Set the period of timeout

VOS_IOCTL_ETHERNET_SET_RETRANSMISSION
_COUNT

Set the number of re-transmission

VOS_IOCTL_ETHERNET_SOCKET Initialize and open a socket

VOS_IOCTL_ETHERNET_CLOSE Close a socket

VOS_IOCTL_ETHERNET_LISTEN Establish the connection for a socket in Server mode

VOS_IOCTL_ETHERNET_CONNECT Establish the connection for the socket in Client
mode

VOS_IOCTL_ETHERNET_DISCONNECT Disconnect a socket

VOS_IOCTL_ETHERNET_SEND Send data from a socket. It is used for TCP mode
only

Copyright © 2012 Future Technology Devices International Ltd. 425

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_ETHERNET_RECV Receive data from a socket. It is used for TCP mode
only

VOS_IOCTL_ETHERNET_SENDTO Send data from a socket. It is used for modes other
than TCP

VOS_IOCTL_ETHERNET_RECVFROM Receive data from a socket. It is used for modes
other than TCP

VOS_IOCTL_ETHERNET_GET_SOCK_STATUS Retrieve the current status of the specified socket

VOS_IOCTL_ETHERNET_GET_TX_FREE_SIZE Retrieve the data size that user can transmit

VOS_IOCTL_ETHERNET_GET_RX_RCVD_SIZE Retrieve the data size that is actually received in RX
Memory

VOS_IOCTL_ETHERNET_SET_INTERRUPT_MASK Assigns the interrupt mask value

VOS_IOCTL_ETHERNET_GET_INTERRUPT_TYPE Get the interrupt value

VOS_IOCTL_ETHERNET_CLEAR_INTERRUPT_RE
G

Clears the interrupt register

VOS_IOCTL_ETHERNET_ATTACH_SPI_M_HANDL
E

Attach to a SPI master handle

VOS_IOCTL_ETHERNET_DETACH_SPI_M_HANDL
E

Release the SPI master handle

4.2.2.5.2.1 VOS_IOCTL_ETHERNET_W5100_INIT

Description

Initialize W5100 registers, RX and TX memory size, Tx/Rx buffer base addresses for each socket.

Parameters

None

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

cb.ioctl_code = VOS_IOCTL_ETHERNET_W5100_INIT;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.2 VOS_IOCTL_ETHERNET_SET_GATEWAY_IP

Description

Assign a Gateway Address to the chip.

Parameters

cb.gtw_addr

A pointer to an array that contains the Gateway Address. The array should contain 4 elements of
type uint8 (unsigned char). The first element contains the first byte of the Gatewate Address, the
second element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Copyright © 2012 Future Technology Devices International Ltd. 426

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

ethernet_ioctl_cb_t cb;

uint8 gtw_addr[] = {10,44,0,254};

uint8* gateway = >w_addr;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_GATEWAY_IP;

cb.gtw_addr = gateway;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.3 VOS_IOCTL_ETHERNET_GET_GATEWAY_IP

Description

Get the current Gateway Address of the chip.

Parameters

cb.gtw_addr

A pointer to an array that contains the returned Gateway Address. The array should contain 4
elements of type uint8 (unsigned char). The first element contains the first byte of the Gateway
Address, the second element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 gtw_addr[] = {10,44,0,254};

uint8* gateway = >w_addr;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_GATEWAY_IP;

cb.gtw_addr = gateway;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.4 VOS_IOCTL_ETHERNET_SET_SUBNET_MASK

Description

Assign a Subnet Mask to the chip

Parameters

cb.sub_mask

A pointer to an array that contains the Subnet Mask. The array should contain 4 elements of type
uint8 (unsigned char). The first element contains the first byte of the Subnet Mask, the second
element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 sub_mask[] = {255,255,255,0};

uint8* subnet = &sub_mask;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_SUBNET_MASK;

cb.sub_mask = subnet;

vos_dev_ioctl(hEthernet, &cb);

Copyright © 2012 Future Technology Devices International Ltd. 427

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.5.2.5 VOS_IOCTL_ETHERNET_GET_SUBNET_MASK

Description

Obtain the current Subnet Mask of the chip

Parameters

cb.sub_mask

A pointer to an array that contains the returned Subnet Mask. The array should contain 4
elements of type uint8 (unsigned char). The first element contains the first byte of the Subnet
Mask, the second element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 sub_mask[] = {255,255,255,0};

uint8* subnet = &sub_mask;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_SUBNET_MASK;

cb.sub_mask = subnet;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.6 VOS_IOCTL_ETHERNET_SET_MAC_ADDRESS

Description

Assign a MAC Address to the chip.

Parameters

cb.mac_addr

A pointer to an array that contains the MAC Address. The array should contain 6 elements of
type uint8 (unsigned char). The first element contains the first byte of the MAC Address, the
second element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 mac_addr[] = {0x90,0xA2,0xDA,0x00,0x14,0xBA};

uint8* mac = &mac_addr;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_MAC_ADDRESS;

cb.mac_addr = mac;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.7 VOS_IOCTL_ETHERNET_GET_MAC_ADDRESS

Description

Obtain the MAC Address of the chip.

Parameters

cb.mac_addr

A pointer to an array that contains the returned MAC Address. The array should contain 6

Copyright © 2012 Future Technology Devices International Ltd. 428

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

elements of type uint8 (unsigned char). The first element contains the first byte of the MAC
Address, the second element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 mac_addr[] = {0x90,0xA2,0xDA,0x00,0x14,0xBA};

uint8* mac = &mac_addr;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_MAC_ADDRESS;

cb.mac_addr = mac;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.8 VOS_IOCTL_ETHERNET_SET_IP_ADDRESS

Description

Assign an IP Address to the chip

Parameters

cb.ip_addr

A pointer to an array that contains the IP Address. The array should contain 4 elements of type
uint8 (unsigned char). The first element contains the first byte of the IP Address, the second
element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 ip_addr[] = {10,44,0,150};

uint8* ip = &ip_addr;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_IP_ADDRESS;

cb.ip_addr = ip;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.9 VOS_IOCTL_ETHERNET_GET_IP_ADDRESS

Description

Obtain the IP Address of the chip

Parameters

cb.ip_addr

A pointer to an array that contains the returned IP Address. The array should contain 4 elements
of type uint8 (unsigned char). The first element contains the first byte of the IP Address, the
second element contains the second byte, and so on.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 ip_addr[] = {10,44,0,150};

uint8* ip = &ip_addr;

Copyright © 2012 Future Technology Devices International Ltd. 429

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_IP_ADDRESS;

cb.ip_addr = ip;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.10 VOS_IOCTL_ETHERNET_SET_RETRANSMISSION_TIME

Description

Set the period of timeout. Value 1 means 100us. The initial value is 2000(0x07D0), i.e. 200ms.

Parameters

cb.timeout

The timeout period (actual timeout = timeout * 100us)

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_RETRANSMISSION_TIME;

cb.timeout = 10;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.11 VOS_IOCTL_ETHERNET_SET_RETRANSMISSION_COUNT

Description

Set the number of re-transmission.

Parameters

cb.retry

The number of re-transmission

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_RETRANSMISSION_COUNT;

cb.retry = 3;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.12 VOS_IOCTL_ETHERNET_SOCKET

Description

Initialize a socket, set the protocol and the port and wait for W5100 to complete it

Parameters

cb.socket_number

The socket to be initialized. Valid socket numbers are 0, 1, 2, 3.

cb.protocol

Copyright © 2012 Future Technology Devices International Ltd. 430

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The Ethernet Protocol to be used for the socket. Valid protocols are:

TCP / UDP / IPRAW / MACRAW / PPPOE

cb.eth_port

A port number to be associated to the socket

Returns

This IOCTL will return ETHERNET_STATUS_OK on successful socket creation. If the socket creation
failed then ETHERNET_STATUS_SOCKET_CREATION_FAILED will be returned.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

info->sport = 80;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SOCKET;

cb.socket_number = info->sock_id;

cb.protocol = TCP;

cb.eth_port = info->sport;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.13 VOS_IOCTL_ETHERNET_CLOSE

Description

Close a socket

Parameters

cb.socket_number

The socket to be closed. Valid socket numbers are 0, 1, 2, 3.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

cb.ioctl_code =VOS_IOCTL_ETHERNET_CLOSE;

cb.socket_number = info->sock_id;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.14 VOS_IOCTL_ETHERNET_LISTEN

Description

Establish the connection for a socket in Server mode. This function waits for the request from the
peer.

Parameters

cb.socket_number

The socket to listen for connection request. Valid socket numbers are 0, 1, 2, 3.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 431

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

This IOCTL will return ETHERNET_STATUS_OK on successful socket listen. If the socket listen failed
then ETHERNET_STATUS_LISTEN_FAILED will be returned.

Example

ethernet_ioctl_cb_t cb;

uint8 sock_id = 0;

cb.ioctl_code = VOS_IOCTL_ETHERNET_LISTEN;

cb.socket_number = sock_id;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.15 VOS_IOCTL_ETHERNET_CONNECT

Description

Establish the connection for the socket in Client mode. This function waits until the connection is
established.

Parameters

cb.socket_number

The socket to connect to a remote device. Valid socket numbers are 0, 1, 2, 3.

cb.remote_dev_ip_addr

A pointer to an array that contains the IP Address of the remote device. The array should contain
4 elements of type uint8 (unsigned char). The first element contains the first byte of the IP
Address, the second element contains the second byte, and so on.

cb.remote_dev_port

The port on the remote device to connect.

Returns

This IOCTL will return ETHERNET_STATUS_OK on successful socket connection. If the socket
connection failed then ETHERNET_STATUS_INVALID_SERVER_ADDRESS will be returned.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

info->sport = 80;

uint8 ip_addr[] = {10,44,0,150};

info->ip = &ip_addr;

cb.ioctl_code = VOS_IOCTL_ETHERNET_CONNECT;

cb.socket_number = info->sock_id;

cb.remote_dev_ip_addr = info->ip;

cb.remote_dev_port = info->sport;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.16 VOS_IOCTL_ETHERNET_DISCONNECT

Description

Disconnect a socket

Parameters

cb.socket_number

Copyright © 2012 Future Technology Devices International Ltd. 432

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The socket to be disconnected. Valid socket numbers are 0, 1, 2, 3.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

cb.ioctl_code =VOS_IOCTL_ETHERNET_DISCONNECT;

cb.socket_number = info->sock_id;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.17 VOS_IOCTL_ETHERNET_SEND

Description

Send data from a socket. This function is used for TCP mode only.

Parameters

cb.socket_number

The socket from which data is sent. Valid socket numbers are 0, 1, 2, 3.

cb.write_buffer

A pointer to an array that contains the data to be sent

cb.write_buf_len

The number of bytes to be sent

Returns

This IOCTL will return ETHERNET_STATUS_OK on successful send. If the socket send failed then
ETHERNET_STATUS_SENDING_FAILED will be returned.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

uint8* data;

uint16 len;

len = 4;

cb.ioctl_code =VOS_IOCTL_ETHERNET_SEND;

cb.socket_number = info->sock_id;

cb.write_buffer = data;

cb.write_buf_len = len;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.18 VOS_IOCTL_ETHERNET_RECV

Description

Receive data from a socket. It continues to wait for data as much as the application wants to
receive. This function is used for TCP mode only.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 433

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

cb.socket_number

The socket from which data is received. Valid socket numbers are 0, 1, 2, 3.

cb.read_buffer

A pointer to an array that contains the data to be received

cb.read_buf_len

The number of bytes to be received

Returns

This IOCTL will return ETHERNET_STATUS_OK on successful receive. If the socket receive failed then
ETHERNET_STATUS_RECEIVING_FAILED will be returned.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

uint32 read_byte = 0;

cb.ioctl_code = VOS_IOCTL_ETHERNET_RECV;

cb.socket_number = info->sock_id;

cb.read_buffer = &read_byte;

cb.read_buf_len = 1;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.19 VOS_IOCTL_ETHERNET_SENDTO

Description

Send data from a socket. This function is used for modes other than TCP.

Parameters

cb.socket_number

The socket from which data is sent. Valid socket numbers are 0, 1, 2, 3.

cb.write_buffer

A pointer to an array that contains the data to be sent

cb.write_buf_len

The number of bytes to be sent

cb.remote_dev_ip_addr

A pointer to an array that contains the IP Address of the receiver. The array should contain 4
elements of type uint8 (unsigned char). The first element contains the first byte of the IP
Address, the second element contains the second byte, and so on.

cb.remote_dev_port

The receiver’s port number

Returns

This IOCTL will return ETHERNET_STATUS_OK on successful send to the remote device. If the socket
send to the remote device failed then ETHERNET_STATUS_SENDING_FAILED will be returned.

Example

ethernet_ioctl_cb_t cb;

uint8 sock_id = 0;

Copyright © 2012 Future Technology Devices International Ltd. 434

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

uint8* buf;

uint16 len = 2;

uint8 ip_addr[] = {10,44,0,150};

uint8* ip = &ip_addr;

uint16 sport = 80;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SENDTO;

cb.socket_number = sock_id;

cb.write_buffer = buf;

cb.write_buf_len = len;

cb.remote_dev_ip_addr = ip;

cb.remote_dev_port = &sport;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.20 VOS_IOCTL_ETHERNET_RECVFROM

Description

Receive data from a socket. This function is used for modes other than TCP.

Parameters

cb.socket_number

The socket from which data is received. Valid socket numbers are 0, 1, 2, 3.

cb.read_buffer

A pointer to an array that contains the data to be received

cb.read_buf_len

The number of bytes to be received

cb.remote_dev_ip_addr

A pointer to an array that contains the IP Address of the sender. The array should contain 4
elements of type uint8 (unsigned char). The first element contains the first byte of the IP
Address, the second element contains the second byte, and so on.

cb.remote_dev_port

The sender’s port number

Returns

This IOCTL will return ETHERNET_STATUS_OK on successful receive from the remote device. If the
socket receive from the remote device failed then ETHERNET_STATUS_RECEIVING_FAILED will be
returned.

Example

ethernet_ioctl_cb_t cb;

uint8 sock_id = 0;

uint8* buf;

uint16 len = 2;

uint8 ip_addr[] = {10,44,0,150};

uint8* ip = &ip_addr;

uint16 sport = 80;

uint16 read_bytes;

cb.ioctl_code = VOS_IOCTL_ETHERNET_RECVFROM;

cb.socket_number = sock_id;

cb.read_buffer = buf;

cb.read_buf_len = len;

cb.remote_dev_ip_addr = ip;

cb.remote_dev_port = sport;

vos_dev_ioctl(hEthernet, &cb);

read_bytes = cb.rcvd_bytes;

Copyright © 2012 Future Technology Devices International Ltd. 435

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.5.2.21 VOS_IOCTL_ETHERNET_GET_SOCK_STATUS

Description

Retrieve the current status of the specified socket.

Parameters

cb.socket_number

The socket whose status is retrieved. Valid socket numbers are 0, 1, 2, 3.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 sock_id;

uint8 ret = ETHERNET_LIB_FAILURE;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_SOCK_STATUS;

cb.socket_number = sock_id;

vos_dev_ioctl(hEthernet, &cb);

ret = cb.sock_status;

4.2.2.5.2.22 VOS_IOCTL_ETHERNET_GET_TX_FREE_SIZE

Description

Retrieve the data size that user can transmit. For data transmission, user should check this value
first and control the size of transmitting data.

Parameters

cb.socket_number

The socket whose data size is retrieved. Valid socket numbers are 0, 1, 2, 3.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_TX_FREE_SIZE;

cb.socket_number = info->sock_id;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.23 VOS_IOCTL_ETHERNET_GET_RX_RCVD_SIZE

Description

Retrieve the data size that is actually received in RX Memory.

Parameters

cb.socket_number

The socket whose data size is retrieved. Valid socket numbers are 0, 1, 2, 3.

Copyright © 2012 Future Technology Devices International Ltd. 436

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

client_info_t *info;

info->sock_id = 1;

uint8 status = 0;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_RX_RCVD_SIZE;

cb.socket_number = info->sock_id;

vos_dev_ioctl(hEthernet, &cb);

status = cb.rxRcvdSize;

4.2.2.5.2.24 VOS_IOCTL_ETHERNET_SET_INTERRUPT_MASK

Description

Sets the interrupt mask value in the interrupt register.

Parameters

cb.interrupt_mask

Value of the interrupt mask to be assigned to the interrupt register.

Valid values are IR_CONFLICT, IR_UNREACH, IR_PPPOE, IR_SEND_OK, IR_TIMEOUT, IR_RECV,
IR_DISCON, IR_CON

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 interrupt_mask = IR_CON;

cb.ioctl_code = VOS_IOCTL_ETHERNET_SET_INTERRUPT_MASK;

cb.interrupt_mask = interrupt_mask;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.25 VOS_IOCTL_ETHERNET_GET_INTERRUPT_TYPE

Description

Read the interrupt register for the interrupt status.

Parameters

cb.interrupt_type

The value of the interrupt register is obtained.

Valid values are combination of IR_CONFLICT, IR_UNREACH, IR_PPPOE, IR_SEND_OK,
IR_TIMEOUT, IR_RECV, IR_DISCON and IR_CON

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

Copyright © 2012 Future Technology Devices International Ltd. 437

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

uint8 interrupt_type;

cb.ioctl_code = VOS_IOCTL_ETHERNET_GET_INTERRUPT_TYPE;

cb.interrupt_type = &interrupt_type;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.26 VOS_IOCTL_ETHERNET_CLEAR_INTERRUPT_REG

Description

Clears the interrupt register

Parameters

cb.interrupt_type

Clears the interrupt register with the value send.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 interrupt_type = IR_CON;

cb.ioctl_code = VOS_IOCTL_ETHERNET_CLEAR_INTERRUPT_REG;

cb.interrupt_type = interrupt_type;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.2.27 VOS_IOCTL_ETHERNET_ATTACH_SPI_M_HANDLE

Description

Attach to the SPI Master handle.

Parameters

cb.spi_master_handle

The SPI Master handle to be used for the register access.

cb.chip_select_identifier

The chip selection identifier for the SPI Master.

Valid values are ETHERNET_CHIP_SELECT_0 (ADC uses SPI Master slave select 0),

ETHERNET_CHIP_SELECT_1 (ADC uses SPI Master slave select 1)

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

uint8 spi_master_handle = 2;

uint8 chip_select_identifier = ETHERNET_CHIP_SELECT_1;

cb.ioctl_code = VOS_IOCTL_ETHERNET_ATTACH_SPI_M_HANDLE;

cb.spi_master_handle = spi_master_handle;

cb.chip_select_identifier = chip_select_identifier;

vos_dev_ioctl(hEthernet, &cb);

Copyright © 2012 Future Technology Devices International Ltd. 438

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.2.2.5.2.28 VOS_IOCTL_ETHERNET_DETACH_SPI_M_HANDLE

Description

Release the SPI Master handle

Parameters

None.

Returns

This IOCTL will always return ETHERNET_STATUS_OK.

Example

ethernet_ioctl_cb_t cb;

cb.ioctl_code = VOS_IOCTL_ETHERNET_DETACH_SPI_M_HANDLE;

vos_dev_ioctl(hEthernet, &cb);

4.2.2.5.3 Ethernet_init

Description

Initialize the Ethernet driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the driver with the Device Manager is passed in the
devNum parameter.

Returns

The function returns zero if successful and non-zero if it could not initialize the driver or allocate
memory for the driver.

4.2.2.6 File Systems

4.2.2.6.1 FAT File System

The FAT File System is implemented as both an API and as a driver to allow flexibility in an
application. Knowledge of the underlying aspects of the file system is not required, as low-level
operations are managed by the driver or API.

There are restrictions given relating to the way in which the file system is used and guidance on how
to obtain maximum performance from the file system.

The primary target application for the FAT File System is Flash disks, however, there are no design
limitations on using it with hard disks with a suitable USB interface. The FTDI supplied SD card driver
is also supported by the FAT File System.

Driver Hierarchy

FAT Driver hierarchy:

FAT Driver

FAT API

BOMS Class Driver SD Card Driver Other MSI Driver

USB Host Driver SPI Master Driver

Copyright © 2012 Future Technology Devices International Ltd. 439

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS Kernel

USB Host Hardware SPI Master
Hardware

Other Hardware

The fatdrv_init() function must be called to initialise the driver before the kernel scheduler is started
with vos_start_scheduler().

Library Files

USBHost.a SPIMaster.a

BOMS.a SDCard.a

FAT.a FAT.a

Header Files

USBHost.h SPIMaster.h

BOMS.h SDCard.h

MSI.h MSI.h

FAT.h FAT.h

API Hierarchy

FAT API hierarchy:

FAT API

BOMS Class Driver SD Card Driver Other MSI Driver

USB Host Driver SPI Master Driver

VOS Kernel

USB Host Hardware SPI Master
Hardware

Other Hardware

The fat_init() function must be called before using the FAT file system API. There is no sequential
restrictions on when it is called.

Library Files

USBHost.a SPIMaster.a

BOMS.a SDCard.a

FAT.a FAT.a

Header Files

USBHost.h SPIMaster.h

BOMS.h SDCard.h

MSI.h MSI.h

FAT.h FAT.h

4.2.2.6.1.1 FAT File System Concepts

The FAT File System supports the following features.

Method for finding files.

Stream functions on files:

Interface for reading from files to a buffer in memory or another device driver.

Copyright © 2012 Future Technology Devices International Ltd. 440

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Interface for writing to a file from a buffer in memory or from another device driver.

Moving about in a file, seek, set position.

Modifying a file, setting EOF.

File management routines, delete, modify, rename.

Directory management routines; create directory, remove directory, change directory.

An API is provided as well as a layered driver interface. Calls to the FAT driver will be enacted by the
FAT API.

Other methods of using the file system can be layered on top of the FAT File system. The stdio library
provides a familiar streaming interface to the file system.

If the API it to be used then it is initialised using the fat_init() call. If the driver is to be used then
the fatdrv_init() call must be made before the kernel scheduler is started. In both cases the device
on which the file system is present need not be specified. A connection to a physical device is only
made when the relevant attach function is called.

The FAT File System maintains the current directory. Changing directory in the file system will result
in all subsequent commands such as file open FAT_IOCTL_FILE_OPEN or fat_fileOpen() commands
working on files in the current directory. Already opened files will remain working on files in the
directories where they were opened.

Sectors

A sector is the smallest unit of data that can be read or written on a disk. It is normally 512 bytes.
Data sizes smaller than a sector will require multiple disk operations as a read-modify-write cycle will
be used.

This slows data throughput considerably resulting in slower applications.

To benefit from sector sized operations they must be aligned on sector boundaries otherwise the
read-modify-write cycle will be require for completing the end of a sector and possibly for the start of
the next sector.

Clusters

The natural size for a block of data to be read from or written to a disk is a cluster. A cluster is made
up of 1, 2, 4, 8, 16 or 32 sectors. Disks usually have to read in a whole cluster of information to
perform a sector operation.

Therefore data read or written in clusters can group together sector operations allowing the disk to
work at maximum performance. Again, operations aligned to cluster boundaries will produce the best
performance.

Driver or API

There is a very small performance overhead when using the driver interface over the API. This
difference is due to the driver decoding the IOCTL code and calling the API commands.

The driver provides an extra level of abstraction by managing certain handles and data allowing a
slight simplification of the application. It also presents a standard interface to the application which
can be used for layering further drivers on top of the FAT driver. For example, the stdio runtime
library uses the driver to perform file system operations.

It is recommended to use the driver in preference to the API. If possible, the stdio runtime library
should be used where code requires to be written in the style of C programs on other operation
systems.

All file names MUST be uppercase.

Filenames are always specified as 11 characters with space characters (ASCII 32 decimal or 0x20)
padding. Filename extensions must start on character 9 in the 11 character filename string.

Long file names (on FAT32) are not and will not be supported.

Proprietary extensions to the Bulk-only Mass Storage specification are not supported.

Only disks which have a sector size of 512 bytes are currently supported.

Only FAT16 and FAT32 disk formats are supported at present.

Copyright © 2012 Future Technology Devices International Ltd. 441

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

typedef void *fat_context;

Description

The API exposes a handle to a file system when a FAT file system is opened. This is used for certain
calls into the API to ensure that the correct instance of the file system is being addressed.

Parameters

The storage structure for fat_context is reserved for use by FTDI.

FAT API File Handles

In the API, a pointer of type fat_context is obtained by the fat_open() call. This points to storage
allocated for the file system handle. This is destroyed when the fat_close() function is called.

FAT Driver File Handles

The FAT driver manages all aspects of file system handles and does not expose it to the user.

Syntax

typedef struct _file_context_t

{

unsigned char dirEntry[32];

unsigned char mode;

unsigned char context[22];

} file_context_t;

Description

Both the FAT File System API and Driver use the concept of a file handle, but they are used slightly
differently. The file handle is a structure or a pointer to a structure. The file handle structure is called
file_context_t and is defined in fat.h.

A pointer to a file handle is used to specify an individual file within the file system. The handle allows
multiple files to be open concurrently although the same file may not be opened more than once.

A file handle may be obtained without actually opening a file. This can be used for directory
operations where the contents of the file are not to be read or written.

No part of the file system handle may be altered.

The directory table entry of a file (file size, attributes, name) is not modified until either the file is
closed or it is flushed to the disk. Therefore, when writing files to the disk it is recommended that
files are closed and reopened when there is no activity on a file or that files are periodically flushed
to maintain coherency between the directory entry information and the actual file.

Parameters

dirEntry

A copy of the directory entry for the file. This must not be altered.

mode

The current open mode of the file. This can be one of the following values (defined in fat.h)
and is set by the fat_fileOpen() API function or FAT_IOCTL_FILE_OPEN driver call.

FILE_MODE_HANDLE Obtain a handle to a file but do not allow read or write
operations. Must be used to obtain a handle for a directory.

FILE_MODE_READ File pointer at Start-of-File, read only access. The file must
exist.

FILE_MODE_WRITE File pointer at Start-of-File, write only access. Truncate to
zero length on open. The file is created if it does not exist.

Copyright © 2012 Future Technology Devices International Ltd. 442

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

FILE_MODE_APPEND File pointer at End-of-File, write only access. Writes append
at end of file. The file is created if it does not exist.

FILE_MODE_READ_PLUS File pointer at Start-of-File, read or write access. Files will be
truncated at the last character of a write. The file must exist.

FILE_MODE_WRITE_PLUS File pointer at Start-of-File, read or write access. Truncate to
zero length on open.

FILE_MODE_APPEND_PLUS File pointer at End-of-File, read or write access. Writes
append at the end of the file. The file is created if it does not
exist.

context

The context member is reserved for use by FTDI.

FAT API File Handles

In the API, the structure allocated by the application to store information about an open file. A
pointer to the file handle is passed to fat_fileOpen() and this is used to store the information in the
structure.

Making the application responsible for allocating memory for file handles allows more control over the
number of handles allocated and reuse of existing handles. It also allows an application to
preallocate a handle to improve response time when opening a file.

If no updates to a file or directory handle are made then the file handle may be reused without
closing the file. If the file or directory has been modified then the fat_fileClose() function must be
called before the file handle can be reused.

FAT Driver File Handles

The FAT driver will allocate memory for a file handle and manage the use of the file handle
throughout. The handle will be created when FAT_IOCTL_FILE_OPEN IOCTL is called in the driver and
destroyed when FAT_IOCTL_FILE_CLOSE is called.

Syntax

#define FAT12 0x12

#define FAT16 0x16

#define FAT32 0x32

Description

The FAT File system supports FAT32 and FAT16. FAT12 is currently not supported but detected by the
file system initialisation process.

The three definitions above are found in fat.h header file and are used to determine the file system
type. Any other value indicates an unsupported file system type.

FAT File System dates and times are represented by an encoded 32 bit number for the date and
time; or a 16 bit number representing only a date.

Where a date and time are represented, the upper 16 bits are the date and the lower 16 bits the
time.

32 Bit Values 16 Bit Values Description Allowable Values Meaning

25:31 9:15 Year 0 – 127 0 = 1980
127 = 2107

21:24 5:8 Months 1 – 12 1 = January
12 = December

16:20 0:4 Days 1 – 31 1 = first day of
month

11:15 N/A Hours 0 – 23 24 hour clock

5:10 N/A Minutes 0 – 59

0:4 N/A Seconds/2 0 – 29 0 = 0 seconds
29 = 58 seconds

Copyright © 2012 Future Technology Devices International Ltd. 443

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The default time on the FAT File System is 0x3c210000 (2010-01-01 00:00:00 - 1st January 2010).

The time may be set before a command with a call to FAT_IOCTL_DIR_SETTIME in the driver or
fat_time() in the API. All subsequent file operations will update the time in the directory table with
the new time set by these commands. The driver will not adjust the time and cannot keep track of
the time.

4.2.2.6.1.2 FAT Return Codes

Status Codes

All calls to the BOMS driver will return one of the following MSI (Mass Storage Interface) status
codes.

FAT_OK

The command completed successfully.

FAT_NOT_FOUND

A file open, a change directory or a directory search operation did not find the named file.

FAT_READ_ONLY

A read only file has been opened for writing or appending, or an attempt has been made to
write to a file that is open for reading.

FAT_PENDING

Not currently used.

FAT_INVALID_PARAMETER

A parameter in an IOCTL request outwith the valid range.

FAT_INVALID_BUFFER

Not currently used.

FAT_INVALID_FILE_TYPE

An attempt has been made to open either a directory or a volume ID entry as a file.
Alternatively an invalid FAT file system was detected (possibly NTFS).

FAT_EXISTS

An open file operation reports that the file to open already exists. This is not necessarily an
error.

It may be an error response when a create directory operation reports that the target
directory name already exists.

FAT_BPB_INVALID

The boot partition on a disk is invalid and cannot be used.

FAT_NOT_OPEN

An operation on a disk failed because the FAT file system has not been initialised correctly.

Alternatively, a read or write operation to a file has failed because the file is not opened.

FAT_EOF

The end of file has been reached. This may be because there is no space on the disk to
write more data to a file, or a read operation has reached the end of a file.

FAT_DIRECTORY_TABLE_FULL

For FAT12 and FAT16 drives there is no space left in the root directory table. This is a fixed
size and cannot be extended.

FAT_DISK_FULL

There are no free clusters on a disk to store any additional data, create new files or
directories.

FAT_ERROR

An unexpected or unsupported operation was encountered.

FAT_MSI_ERROR

An error was passed from the Mass Storage Interface layer underneath the FAT driver.

4.2.2.6.1.3 FAT File System Driver

Syntax

typedef struct _fat_stream_t {

Copyright © 2012 Future Technology Devices International Ltd. 444

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// file context

file_context_t *file_ctx;

// read/write buffer

unsigned char *buf;

// length of buffer

// maximum size of data to read or write

unsigned long len;

unsigned long actual;

} fat_stream_t;

Description

To read and write to a file using the FAT driver a stream transfer block is used. This is a structure
that is sent to vos_dev_read() and vos_dev_write() to describe to the FAT driver what file to use on
the device and what data to transfer.

It specifies the file context of an open file on the disk, the buffer and length of the buffer, and
returns the actual amount of data transferred.

To perform a read or a write operation, the application must fill in the data in the stream transfer
block and then send a pointer to the transfer block to the diver using vos_dev_read() or
vos_dev_write(). The driver returns the number of bytes transferred in the transaction in the same
structure.

Parameters

file_ctx

The context handle for the open file to be used.

buf

A buffer which is used as the target or source data for the operation.

len

The actual length of the buffer in buf.

actual

A storage area for the BOMS driver to build a transfer descriptor for the USB Host controller.

Remarks

The num_to_read and num_read parameters in the calls to vos_dev_read() or vos_dev_write() are
currently not used. For future compatibility please set num_to_read to sizeof(fat_stream_t) and
num_read to NULL.

Example

VOS_HANDLE hFAT; // initialised, attached FAT file system driver

unsigned long readdatafile(char *buf, unsigned long len)

{

// for opening files
char *file = "DATA TXT";
fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

FILE *fd;

// for reading files

fat_stream_t fst;

unsigned char ret;

unsigned long actual;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

fat_ioctl.file_ctx = 0xffff; // dummy value - not required

fat_ioctl.set = &fileInfo;

fileInfo.filename = file;

fileInfo.mode = FILE_MODE_READ;

if (vos_dev_ioctl(hFAT, &fat_ioctl) == FAT_OK)

{

Copyright © 2012 Future Technology Devices International Ltd. 445

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

fd = fat_ioctl.file_ctx;

// setup a read structure

fst.buf = buf;

fst.len = len;

fst.file_ctx = fd;

ret = vos_dev_read(hFAT, (char *)&fst, sizeof(fat_stream_t), NULL);

if (ret == FAT_OK || ret == FAT_EOF)

{

actual = fst.actual;

}

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

fat_ioctl.file_ctx = fd;

vos_dev_ioctl(hFAT, &fat_ioctl);

}

return actual;

}

Calls to the FAT driver's IOCTL method take the form:

typedef struct _fat_ioctl_cb_t {

unsigned char ioctl_code;

// file context

file_context_t *file_ctx;

// read buffer

unsigned char *get;

// write butter

unsigned char *set;

} fat_ioctl_cb_t;

The following IOCTL request codes for a Mass Storage Interface are supported by the FAT driver.

FAT_IOCTL_FS_ATTACH Attach a Mass Storage Interface to the FAT File
System driver

FAT_IOCTL_FS_DETACH Detach the Mass Storage Interface from the FAT File
System driver

FAT_IOCTL_FS_INFO Return volume information for the Mass Storage
Device

The following IOCTL request codes for File Operations are supported by the FAT driver.

FAT_IOCTL_FILE_OPEN Open a file and return a handle to the file

FAT_IOCTL_FILE_CLOSE Close a file using a file handle

FAT_IOCTL_FILE_SEEK Seek to a relative position in a file

FAT_IOCTL_FILE_SETPOS Set the current position in a file

FAT_IOCTL_FILE_TELL Return the current position in a file

FAT_IOCTL_FILE_REWIND Set the current position to the start of a file

FAT_IOCTL_FILE_TRUNCATE Truncate a file at the current position

FAT_IOCTL_FILE_FLUSH Flush open file to disk

FAT_IOCTL_FILE_DELETE Delete a file

FAT_IOCTL_FILE_RENAME Rename a file

FAT_IOCTL_FILE_MOD Modify the attributes of a file

The following IOCTL request codes for Directory Operations are supported by the FAT driver.

FAT_IOCTL_DIR_FIND Finds a file or directory with a specified name in the
current directory

Copyright © 2012 Future Technology Devices International Ltd. 446

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

FAT_IOCTL_DIR_FIND_FIRST Finds the first file or directory in the current directory

FAT_IOCTL_DIR_FIND_NEXT Finds subsequent files or directories in the current
directory

FAT_IOCTL_DIR_CD Changes the current directory

FAT_IOCTL_DIR_MK Makes a new directory

FAT_IOCTL_DIR_SIZE Obtains the size of a file

FAT_IOCTL_DIR_GETTIME Gets the create, modify and access time information
for a file or directory

FAT_IOCTL_DIR_SETTIME Sets the create, modify and access time information
for a file or directory

FAT_IOCTL_DIR_ISEMPTY Tests whether a directory is empty

FAT_IOCTL_DIR_ISVALID Tests if a file handle is valid

FAT_IOCTL_DIR_ISVOLUMELABEL Tests if a file handle is a volume label

FAT_IOCTL_DIR_ISREADONLY Tests if a file handle is read only

FAT_IOCTL_DIR_ISFILE Tests if a file handle is a valid file

FAT_IOCTL_DIR_ISDIRECTORY Tests if a file handle is a valid directory

Description

Attaches the FAT driver to a Mass Storage Interface device. This can be a BOMS Class, SD Card or
other device conforming to the Mass Storage Interface (MSI) defined in header file msi.h. THE MSI
device must be opened with vos_dev_open() the handle obtained passed to this function The
partition number to use on the disk is specified along with the handle of the MSI device in a special
structure.

Parameters

The MSI device interface handle disk partition number must be passed in a structure using the set
member of the fat_ioctl_cb_t IOCTL structure.

typedef struct _fatdrv_ioctl_cb_attach_t

{

// handle to initialised MSI device

VOS_HANDLE msi_handle;

// partition on device to use

unsigned char partition;

} fatdrv_ioctl_cb_attach_t;

Returns

There is no data returned by this call although the return value indicates success or otherwise of the
attach.

FAT_OK is successful attachment of the device
FAT_INVALID_FILE_TYPE if the file system is not FAT32, FAT 16 or FAT12
FAT_BPB_INVALID if the sector size of not 512 bytes or the boot sector is invalid
FAT_ERROR if the device cannot be read

Example

void BOMSFindDevice()

{

 VOS_HANDLE hUsb2, hBoms, hFat;

 usbhost_device_handle_ex ifDev2 = 0;

 usbhost_ioctl_cb_t hc_iocb;

 usbhost_ioctl_cb_class hc_iocb_class;

 msi_ioctl_cb_t boms_iocb;

 boms_ioctl_cb_attach_t boms_att;

 fat_ioctl_cb_t fat_iocb;

 fatdrv_ioctl_cb_attach_t fat_att;

Copyright © 2012 Future Technology Devices International Ltd. 447

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 // find BOMS class device

 hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;

 hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;

 hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

 hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

 hc_iocb.handle.dif = NULL;

 hc_iocb.set = &hc_iocb_class;

 hc_iocb.get = &ifDev2;

 if (vos_dev_ioctl(hUsb2, &hc_iocb) != USBHOST_OK)

 {

 // no BOMS class found

 }

 // now we have a device, initialise a BOMS driver for it

 hBoms = vos_dev_open(VOS_DEV_BOMS);

 // boms_attach

 boms_att.hc_handle = hUsb2;

 boms_att.ifDev = ifDev2;

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

 boms_iocb.set = &boms_att;

 boms_iocb.get = NULL;

 if (vos_dev_ioctl(hBoms, &boms_iocb) != MSI_OK)

 {

 // could not attach to device

 }

 // now we have a BOMS device, initialise a FAT driver for it

 hFat = vos_dev_open(VOS_DEV_FAT);

 fat_iocb.ioctl_code = FAT_IOCTL_FS_ATTACH;

 fat_iocb.set = &atInfo;

 atInfo.msi_handle = bomsDev;

 atInfo.partition = 0;

 if (vos_dev_ioctl(hFat, &fat_iocb) != FAT_OK)

 {

 // could not attach to FAT device

 }

 // device has been found and opened

 // now detach from the device

 fat_iocb.ioctl_code = FAT_IOCTL_FS_DETACH;

 vos_dev_ioctl(hFat, &fat_iocb)

 boms_iocb.ioctl_code = MSI_IOCTL_BOMS_DETACH;

 vos_dev_ioctl(hBoms, &boms_iocb)

}

Description

Detaches a FAT driver from an MSI device.

Parameters

There are no parameters passed to this IOCTL.

Returns

Copyright © 2012 Future Technology Devices International Ltd. 448

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

There is no data returned by this call. The return value will be the following:

FAT_OK successfully received current file pointer

Example

See example in FAT_IOCTL_FS_ATTACH.

Description

Gets file system information about a disk and populates an application supplied structure. The file
system information is always of a fixed size.

Parameters

There are no parameters for this call.

Returns

The file system information is copied into the structure pointed to by the get member of the
fat_ioctl_cb_t IOCTL structure.

typedef struct _fatdrv_ioctl_cb_fs_t

{

// file system type

char fsType;

// free space on disk in bytes

unsigned int freeSpaceH;

unsigned int freeSpaceL;

// capacity of disk in bytes

unsigned int capacityH;

unsigned int capacityL;

// number of bytes in a cluster

unsigned int bytesPerCluster;

// number of bytes in a sector

unsigned short bytesPerSector;

// volume id

unsigned long volID;

} fatdrv_ioctl_cb_fs_t;

The file system type fsType is one of the types defined in FAT File System Types.

The capacity and free space are 64 bit values which are represented as two 32 bit numbers.

A scan of free space on a disk will be performed when this call is made unless a scan has been done
previously. This means that all clusters on the disk will be checked to see if they are used or unused.
This can take a considerable time on large disks or disks with small cluster sizes. Typically it will
complete in 10 to 30 seconds but can take over 60 seconds on some disks.

The volume ID is a 32 bit unique value associated with the file system during a format operation. It
must not be confused with the volume label obtained

The return value will be the following:

FAT_OK successfully received current file size
FAT_INVALID_PARAMETER the get value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

void diskParams(VOS_HANDLE hDisk)

{

fat_ioctl_cb_t disk_iocb;

fatdrv_ioctl_cb_fs_t disk_iocb_info;

disk_iocb.ioctl_code = FAT_IOCTL_FS_INFO;

disk_iocb.get = &disk_iocb_info;

vos_dev_ioctl(hDisk,&disk_iocb);

Copyright © 2012 Future Technology Devices International Ltd. 449

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (disk_iocb_info.fsType == FAT32)

{

// FAT32 file system detected

if (disk_iocb_info.freeSpaceH > 0)

{

// more than 4GB available on disk!

}

}

}

Description

Opens a file or directory by name in the current directory. It can be used for opening files for read,
write access or simply obtaining a handle to a file without allowing access to the contents.

Directories may only be opened by mode FILE_MODE_HANDLE. This can be used to rename
directories (with FAT_IOCTL_FILE_RENAME) or change the attributes of a directory (with
FAT_IOCTL_FILE_MOD).

Parameters

The call takes a structure containing file information which is pointed to by the set member of the
fat_ioctl_cb_t IOCTL structure. The fatdrv_ioctl_cb_file_t structure is defined in fat.h.

typedef struct _fatdrv_ioctl_cb_file_t

{

// filename

char *filename;

// offset within file or size of file

int offset;

// access mode of file, seek mode or file attribute

char mode;

} fatdrv_ioctl_cb_file_t;

The filename member shall contain a pointer to an 11 character file name. It must use space
characters (ASCII 32 decimal or 0x20) as padding. Filename extensions must start on character 9 in
the 11 character filename string.

The offset member is not used in FAT_IOCTL_FILE_OPEN.

The mode member is one of the File Mode Values defined in the FAT File Handle structure.

Returns

The following value may be returned by this call:

FAT_OK successful file open
FAT_NOT_FOUND file system type invalid or file system not attached, open a file for reading
which does not exist
FAT_INVALID_FILE_TYPE attempt to open a volume ID directory entry or directory as a file
FAT_READ_ONLY opening a read only file with a write or append mode
FAT_DISK_FULL no free clusters found in which to store file data
FAT_DIRECTORY_TABLE_FULL root directory on FAT12 and FAT16 disks has no free entries
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

A FAT File Handle is returned in the file_ctx member of the fat_ioctl_cb_t IOCTL structure. This is
used for subsequent access to the file. It must be destroyed using FAT_IOCTL_FILE_CLOSE.

Example

FILE *openlog(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

char file[11] = "MYBIGDATLOG"; // mybigdat.log

FILE *fd;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

Copyright © 2012 Future Technology Devices International Ltd. 450

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

fat_ioctl.file_ctx = 0xffff;

fat_ioctl.set = &fileInfo;

fileInfo.filename = file;

fileInfo.mode = FILE_MODE_APPEND_PLUS; // eof, R/W access

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

fd = fat_ioctl.file_ctx;

return fd;

}

else

{

return NULL;

}

}

void closelog(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// closed

}

}

Description

Closes a file and commits any changes to the file and it's directory table entry (size, filename,
attributes) to the disk.

Parameters

There are no parameters passed to this IOCTL.

Returns

There is no data returned by this call. The return value will be the following:

FAT_OK successfully received current file pointer

Example

See example in FAT_IOCTL_FILE_OPEN

Description

Seeks to a specified offset in a file. The offset can be relative to the start, current file pointer or end
of a file.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes the same fatdrv_ioctl_cb_file_t structure containing file information as
FAT_IOCTL_FILE_OPEN. The structure is pointed to by the set member of the fat_ioctl_cb_t IOCTL
structure.

The filename member of the fatdrv_ioctl_cb_file_t structure is not used in
FAT_IOCTL_FILE_SEEK.

The mode member takes a value depending on where the relative position of current file pointer to
the offset member is calculated. The offset member is treated as a signed value and may be
negative. The new position in the file is calculated as follows:

Copyright © 2012 Future Technology Devices International Ltd. 451

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

FAT_SEEK_CUR The offset is added to the current file position

FAT_SEEK_END The offset must be negative and the new position is the end of file plus the
offset value

FAT_SEEK_SET The offset must be positive and the file position is set to the offset from the
start of file

Returns

There is no data returned by this call. However, return values may be one of the following:

FAT_OK successfully moved the file pointer to the new location
FAT_EOF the new file pointer is beyond the EOF of the current file or is negative
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

char skipon(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

if (fd == NULL)

{

return -1;

}

// move 256 bytes further on in a file

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_SEEK;

fat_ioctl.file_ctx = fd;

fat_ioctl.set = &fileInfo;

fileInfo.offset = 256;

fileInfo.mode = FAT_SEEK_CUR;

if (vos_dev_ioctl(hFat, &fat_ioctl) != FAT_OK)

{

return -1;

}

return 0;

}

Description

Moves the current file pointer to a specified offset from the start of a file.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes the same fatdrv_ioctl_cb_file_t structure containing file information as
FAT_IOCTL_FILE_OPEN. The structure is pointed to by the set member of the fat_ioctl_cb_t IOCTL
structure.

The filename member of the fatdrv_ioctl_cb_file_t structure is not used in
FAT_IOCTL_FILE_SETPOS.

The offset member is treated as an unsigned value and is used as the new location in the file for
the current file pointer.

Returns

There is no data returned by this call. However, return values may be one of the following:

FAT_OK successfully moved the file pointer to the new location
FAT_EOF the new file pointer is beyond the EOF
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Copyright © 2012 Future Technology Devices International Ltd. 452

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

char skipheader(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

if (fd == NULL)

{

return -1;

}

// move to an offset of 256 bytes in a file to skip over a header

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_SETPOS;

fat_ioctl.file_ctx = fd;

fat_ioctl.set = &fileInfo;

fileInfo.offset = 256;

if (vos_dev_ioctl(hFat, &fat_ioctl) != FAT_OK)

{

return -1;

}

return 0;

}

Description

Obtains the current file pointer for a file.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes the same fatdrv_ioctl_cb_file_t structure containing file information as
FAT_IOCTL_FILE_OPEN. The structure is pointed to by the get member of the fat_ioctl_cb_t IOCTL
structure.

The filename and mode members of the fatdrv_ioctl_cb_file_t structure is not used in
FAT_IOCTL_FILE_TELL.

Returns

The offset member of the fatdrv_ioctl_cb_file_t structure obtains the current file pointer. The
return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_INVALID_PARAMETER the get value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

unsigned long getposition(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

if (fd == NULL)

{

return -1;

}

// get position in file

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_TELL;

fat_ioctl.file_ctx = fd;

fat_ioctl.get = &fileInfo;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

Copyright © 2012 Future Technology Devices International Ltd. 453

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

return fileInfo.offset;

}

return -1;

}

Description

Moves the current file pointer to the start of a file.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

Returns

There is no data returned by this call. The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

char back2start(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

if (fd == NULL)

{

return -1;

}

// move to start of file

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_REWIND;

fat_ioctl.file_ctx = fd;

if (vos_dev_ioctl(hFat, &fat_ioctl) != FAT_OK)

{

return -1;

}

return 0;

}

Description

Truncates a file to the position of the current file pointer.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

Returns

There is no data returned by this call. The return value will be the following:

FAT_OK successfully truncated the file

Example

char cutat64k(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

if (fd == NULL)

{

return -1;

}

Copyright © 2012 Future Technology Devices International Ltd. 454

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// move to an offset of 65535 bytes

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_SETPOS;

fat_ioctl.file_ctx = fd;

fat_ioctl.set = &fileInfo;

fileInfo.offset = 65535;

// truncate at current position (65535 bytes)

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_TRUNCATE;

fat_ioctl.file_ctx = fd;

if (vos_dev_ioctl(hFat, &fat_ioctl) != FAT_OK)

{

return -1;

}

return 0;

}

Description

Commits any changes to the file and it's directory table entry (size, filename, attributes) to the disk.

Parameters

There are no parameters passed to this IOCTL.

Returns

There is no data returned by this call. The return value will be the following:

FAT_OK successfully received current file pointer

Example

void fileUpdate()

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

char file[11] = "MYBIGDATLOG"; // mybigdat.log

char buff[512];

FILE *fd;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

fat_ioctl.file_ctx = 0xffff;

fat_ioctl.set = &fileInfo;

fileInfo.filename = file;

fileInfo.mode = FILE_MODE_APPEND; // eof, W access

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// fat_ioctl.file_ctx is unchanged below

fd = fat_ioctl.file_ctx;

while (extSignal)

{

// write 512 bytes of data from UART to disk

if (vos_dev_read(hUART, buff, 512, NULL) != UART_OK)

{

break;

}

if (vos_dev_write(hFat, buff, 512, NULL) != FAT_OK)

{

break;

}

// commit file changes to disk

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_FLUSH;

if (vos_dev_ioctl(hFat, &fat_ioctl) != FAT_OK)

Copyright © 2012 Future Technology Devices International Ltd. 455

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

{

break;

}

}

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// closed

}

}

}

Description

Deletes a file or directory using a FAT File Handle obtained from FAT_IOCTL_FILE_OPEN. The delete
function does not delete a file or directory based on a name but rather a handle. The file or directory
must be opened first and then deleted. The file or directory must be opened with a file mode of
FILE_MODE_HANDLE to ensure no changes to the file are made before deletion.

The file handle must be destroyed after the delete by closing the file or directory with
FAT_IOCTL_FILE_CLOSE. This will also synchronise the directory table and remove the file or
directory from there.

Directories to be deleted must be empty - have no files or sub-directories.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully deleted the file
FAT_INVALID_FILE_TYPE file not opened with mode FILE_MODE_HANDLE
FAT_EXISTS the file handle points to a directory that is not empty

Example

char delfile(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

char file[11] = "MYBIGDATLOG"; // mybigdat.log

FILE *fd;

char status = -1;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

fat_ioctl.file_ctx = 0xffff;

fat_ioctl.set = &fileInfo;

fileInfo.filename = file;

fileInfo.mode = FILE_MODE_HANDLE; // no file access

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// delete file

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_DELETE;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

status = 0;

}

// free FILE pointer

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

vos_dev_ioctl(hFat, &fat_ioctl);

Copyright © 2012 Future Technology Devices International Ltd. 456

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

}

return status;

}

Description

Renames a file or directory using a FAT File Handle obtained from FAT_IOCTL_FILE_OPEN. The
rename function will change the name of a file or directory to the that specified in the filename
member of fatdrv_ioctl_cb_file_t structure. The file must be opened first and then renamed. The
file or directory must be opened with a file mode of FILE_MODE_HANDLE to ensure no changes to
the file are made before deletion.

Closing or committing the file or directory after the rename with FAT_IOCTL_FILE_CLOSE or
FAT_IOCTL_FILE_FLUSH is required to synchronise the directory table entry.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes the same fatdrv_ioctl_cb_file_t structure containing file information as
FAT_IOCTL_FILE_OPEN. The structure is pointed to by the set member of the fat_ioctl_cb_t IOCTL
structure.

The filename member of the fatdrv_ioctl_cb_file_t structure is used for the new name of the file
or directory.

The offset and mode members are not used.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully deleted the file
FAT_INVALID_FILE_TYPE file not opened with mode FILE_MODE_HANDLE
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

char renamelog(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

char filesrc[11] = "MYBIGDATLOG"; // mybigdat.log

char filedst[11] = "MYBIGDATBAK"; // mybigdat.bak

FILE *fd;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

fat_ioctl.file_ctx = 0xffff;

fat_ioctl.set = &fileInfo;

fileInfo.filename = filesrc;

fileInfo.mode = FILE_MODE_HANDLE; // no file access

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_RENAME;

fileInfo.filename = filedst;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// rename successful

}

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// closed

}

Copyright © 2012 Future Technology Devices International Ltd. 457

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

return 0;

}

return 1;

}

Description

The mod function will change the attributes of a file or directory to the that specified in the mode
member of fatdrv_ioctl_cb_file_t structure. The file or directory must be opened first with a file
mode other than FILE_MODE_READ.

Closing or committing the file or directory after the mod with FAT_IOCTL_FILE_CLOSE or
FAT_IOCTL_FILE_FLUSH is required to synchronise the directory table entry.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes the same fatdrv_ioctl_cb_file_t structure containing file information as
FAT_IOCTL_FILE_OPEN. The structure is pointed to by the set member of the fat_ioctl_cb_t IOCTL
structure.

The mode member of the fatdrv_ioctl_cb_file_t structure is used for the new attribute mask for
the file or directory. Bits may be one or more of the following.

FAT_ATTR_READ_ONLY Read only attribute

FAT_ATTR_HIDDEN Hidden file attribute

FAT_ATTR_SYSTEM System file attribute

FAT_ATTR_ARCHIVE Archive flag attribute

FAT_ATTR_DIRECTORY Directory bit
Must be set if attributes of a directory are changed, must be clear if
a file attributes are changed

The offset and filename members are not used.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully deleted the file
FAT_INVALID_FILE_TYPE file not opened with mode FILE_MODE_HANDLE
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

char readonlylogfile(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

char file[11] = "MYBIGDATLOG"; // mybigdat.log

FILE *fd;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

fat_ioctl.file_ctx = 0xffff;

fat_ioctl.set = &fileInfo;

fileInfo.filename = file;

fileInfo.mode = FILE_MODE_HANDLE; // no file access

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_MOD;

fileInfo.mode = FAT_ATTR_READ_ONLY;

Copyright © 2012 Future Technology Devices International Ltd. 458

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// read only flag set successful

}

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// closed

}

return 0;

}

return 1;

}

Description

Searches in the current directory for a file or directory matching the name specified in the parameters
of the call. The filename is specified in the filename member of the fatdrv_ioctl_cb_dir_t structure.

Wildcards are not permitted. To search through filenames and apply search conditions use
FAT_IOCTL_DIR_FIND_FIRST and FAT_IOCTL_DIR_FIND_NEXT.

Parameters

The call takes a structure containing directory information which is pointed to by the set member of
the fat_ioctl_cb_t IOCTL structure. The fatdrv_ioctl_cb_dir_t structure is defined in fat.h.

typedef struct _fatdrv_ioctl_cb_dir_t

{

char *filename;

} fatdrv_ioctl_cb_dir_t;

The filename member shall contain a pointer to an 11 character file name. It must use space
characters (ASCII 32 decimal or 0x20) as padding.

Returns

The return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_NOT_FOUND a matching file was not found
FAT_EOF no matching file was found but directory table is full
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

A FAT File Handle is returned in the file_ctx member of the fat_ioctl_cb_t IOCTL structure if a
matching file is found. This can be used for subsequent access to the file or directory. The file handle
is opened with a file mode of FILE_MODE_HANDLE. It must be destroyed using
FAT_IOCTL_FILE_CLOSE.

Example

char checkforfile(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_dir_t dirInfo;

char file[11] = "SVNFILES ";

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_FIND;

fat_ioctl.set = dirInfo;

dirInfo.filename = file;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// file exists - destroy pointer

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

vos_dev_ioctl(hFat, &fat_ioctl);

Copyright © 2012 Future Technology Devices International Ltd. 459

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

return 0;

}

return 1;

}

Description

Searches in the current directory for all files and directories. FAT_IOCTL_DIR_FIND_FIRST initialises a
search whereas FAT_IOCTL_DIR_FIND_NEXT is used to continue searching through the files in the
current directory.

Parameters

The call takes the same fatdrv_ioctl_cb_dir_t structure containing directory information as
FAT_IOCTL_DIR_FIND. The structure is pointed to by the get member of the fat_ioctl_cb_t IOCTL
structure.

The filename member must point to a buffer of at least 11 bytes.

Returns

The return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_NOT_FOUND a matching file was not found
FAT_EOF no matching file was found but directory table is full
FAT_INVALID_PARAMETER the filename pointer is NULL
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

A FAT File Handle is returned in the file_ctx member of the fat_ioctl_cb_t IOCTL structure if any
file is found. This can be used for subsequent access to the file or directory. The file handle is opened
with a file mode of FILE_MODE_HANDLE. Subsequent calls to FAT_IOCTL_DIR_FIND_NEXT will reuse
the same file handle. When finished with the handle it must be destroyed using
FAT_IOCTL_FILE_CLOSE.

The name of the file found is copied into the buffer pointed to by the filename member of the
fatdrv_ioctl_cb_dir_t structure.

Example

char processXfiles(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_dir_t dirInfo;

char file[11];

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_FIND_FIRST;

fat_ioctl.get = dirInfo;

dirInfo.filename = file;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// file exists

do

{

if (file[0] == 'X')

{

// process files beginning with X

}

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_FIND_NEXT;

} while (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK);

// finished with handle, destroy

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

Copyright © 2012 Future Technology Devices International Ltd. 460

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_dev_ioctl(hFat, &fat_ioctl);

}

}

Description

Searches in the current directory for subsequent files and directories continuing a
FAT_IOCTL_DIR_FIND_FIRST search.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
from a successful FAT_IOCTL_DIR_FIND_FIRST search.

The call takes the same fatdrv_ioctl_cb_dir_t structure containing directory information as
FAT_IOCTL_DIR_FIND. The structure is pointed to by the get member of the fat_ioctl_cb_t IOCTL
structure.

The filename member must point to a buffer of at least 11 bytes.

Returns

The return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_NOT_FOUND a matching file was not found
FAT_EOF no matching file was found but directory table is full
FAT_INVALID_PARAMETER the filename pointer is NULL
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

The FAT File Handle in the file_ctx member of the fat_ioctl_cb_t IOCTL structure is updated. This
can be used for subsequent access to the file or directory. The file handle is opened with a file mode
of FILE_MODE_HANDLE. Subsequent calls to FAT_IOCTL_DIR_FIND_NEXT will reuse the same file
handle. When finished with the handle it must be destroyed using FAT_IOCTL_FILE_CLOSE.

The name of the file found is copied into the buffer pointed to by the filename member of the
fatdrv_ioctl_cb_dir_t structure.

Example

See example in FAT_IOCTL_DIR_FIND_FIRST.

Description

Changes the current directory to a sub-directory specified in the filename member of
fatdrv_ioctl_cb_dir_t structure.

A special case value of ".. " (2 dots followed by 9 spaces) may be used to move up to a
higher level directory or NULL to the top level directory.

Parameters

The call takes the same fatdrv_ioctl_cb_dir_t structure containing directory information as
FAT_IOCTL_DIR_FIND. The structure is pointed to by the set member of the fat_ioctl_cb_t IOCTL
structure.

The filename member of the fatdrv_ioctl_cb_dir_t structure is used for the destination directory
name. The value of NULL will change the current directory to the volume's root directory.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully changed the current directory
FAT_NOT_FOUND directory not changed as destination directory not found
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

Copyright © 2012 Future Technology Devices International Ltd. 461

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

char changetoroot(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_dir_t dirInfo;

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_CD;

fat_ioctl.set = &dirInfo;

dirInfo.filename = NULL;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

return 0;

}

return 1;

}

char changeup(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_dir_t dirInfo;

char file[11] = ".. ";

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_CD;

fat_ioctl.set = &dirInfo;

dirInfo.filename = file;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

return 0;

}

return 1;

}

char changetosubdir(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_dir_t dirInfo;

char file[11] = "SVNFILES ";

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_CD;

fat_ioctl.set = &dirInfo;

dirInfo.filename = file;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

return 0;

}

return 1;

}

Description

Make a new sub-directory in the current directory. The name is specified in the filename member of
fatdrv_ioctl_cb_dir_t structure.

Parameters

The call takes the same fatdrv_ioctl_cb_dir_t structure containing directory information as
FAT_IOCTL_DIR_FIND. The structure is pointed to by the set member of the fat_ioctl_cb_t IOCTL
structure.

The filename member of the fatdrv_ioctl_cb_dir_t structure is used for the new directory name.

Copyright © 2012 Future Technology Devices International Ltd. 462

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

This must not exist in the current directory.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully created the new directory
FAT_EXISTS directory not created as a directory or file with that name already exists
FAT_DIRECTORY_TABLE_FULL a FAT16 or FAT12 file system has the root directory table full -
this is a fixed size
FAT_DISK_FULL there were no free clusters found for creating a new directory table
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

char makesub(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_dir_t dirInfo;

char file[11] = "SVNFILES ";

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_MK;

fat_ioctl.set = &dirInfo;

dirInfo.filename = file;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

return 0;

}

return 1;

}

Description

Obtains the size of a file.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes the same fatdrv_ioctl_cb_file_t structure containing file information as
FAT_IOCTL_FILE_OPEN. The structure is pointed to by the get member of the fat_ioctl_cb_t IOCTL
structure.

The filename and mode members of the fatdrv_ioctl_cb_file_t structure is not used in
FAT_IOCTL_DIR_SIZE.

Returns

The offset member of the fatdrv_ioctl_cb_file_t structure obtains the file size. The return value
will be one of the following:

FAT_OK successfully received current file size
FAT_INVALID_PARAMETER the get value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

unsigned long getsize(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

if (fd == NULL)

{

return -1;

}

Copyright © 2012 Future Technology Devices International Ltd. 463

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// get size of file

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_SIZE;

fat_ioctl.file_ctx = fd;

fat_ioctl.get = &fileInfo;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

return fileInfo.offset;

}

return -1;

}

Description

Obtains the create, modification and last access times of a file or directory. The encoded dates and
times are described in the FAT File System Date and Times topic.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle.

The call takes a structure containing directory information which is pointed to by the get member of
the fat_ioctl_cb_t IOCTL structure. The fatdrv_ioctl_cb_time_t structure is defined in fat.h.

typedef struct _fatdrv_ioctl_cb_time_t

{

// crtDate and crtTime used for set time and get time methods

unsigned short crtDate;

unsigned short crtTime;

// wrtDate, wrtTime and accDate used for get time method only

unsigned short wrtDate;

unsigned short wrtTime;

unsigned short accDate;

} fatdrv_ioctl_cb_time_t;

Returns

The file times are filled out in the fatdrv_ioctl_cb_time_t structure.

The return value will be one of the following:

FAT_OK successfully received current file size
FAT_INVALID_PARAMETER the get value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

unsigned long getmodtime(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_time_t timeInfo;

unsigned long tmod;

if (fd == NULL)

{

return -1;

}

// get time info for file

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_GETTIME;

fat_ioctl.file_ctx = fd;

fat_ioctl.get = &timeInfo;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

tmod = timeInfo.wrtTime;

tmod |= (timeInfo.wrtDate << 16);

Copyright © 2012 Future Technology Devices International Ltd. 464

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

return tmod;

}

return -1;

}

Description

Sets the time value for subsequent create, modify or accesses of files or directories. The encoded
date and time is described in the FAT File System Date and Times topic.

Parameters

The call takes the same fatdrv_ioctl_cb_time_t structure containing directory information as
FAT_IOCTL_DIR_GETTIME. The structure is pointed to by the set member of the fat_ioctl_cb_t
IOCTL structure.

The crtDate and crtTime members of the fatdrv_ioctl_cb_time_t structure are used for the new
file system time. Other members are not used.

Returns

The return value will be one of the following:

FAT_OK successfully received current file size
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

Example

unsigned long setfstime(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_time_t timeInfo;

// set time

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_SETTIME;

fat_ioctl.set = &timeInfo;

// jun 7th 2010 12:00:00 - 0x3cc76000

timeInfo.crtTime = 0x6000;

timeInfo.crtDate = 0x3cc7;

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

return 0;

}

return -1;

}

Description

Returns a flag indicating if a directory is empty.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
pointing to a directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the directory is empty

Copyright © 2012 Future Technology Devices International Ltd. 465

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

0 if there are one or more files or directories

Example

char logdirexists(VOS_HANDLE hFat)

{

fat_ioctl_cb_t fat_ioctl;

fatdrv_ioctl_cb_file_t fileInfo;

char file[11] = "LOGDIR "; // logdir

FILE *fd;

char status = -1;

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_OPEN;

fat_ioctl.file_ctx = 0xffff;

fat_ioctl.set = &fileInfo;

fileInfo.filename = file;

fileInfo.mode = FILE_MODE_HANDLE; // no file access

if (vos_dev_ioctl(hFat, &fat_ioctl) == FAT_OK)

{

// check if directory is empty

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_ISEMPTY;

status = vos_dev_ioctl(hFat, &fat_ioctl);

// free FILE pointer

fat_ioctl.ioctl_code = FAT_IOCTL_FILE_CLOSE;

vos_dev_ioctl(hFat, &fat_ioctl);

}

return status;

}

Description

Returns a flag indicating if a file or directory is valid.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file or directory is valid

0 if the file handle points to an entry which is not a file or directory

Example

char checkfile(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

char status;

// check if fd is a valid file

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_ISVALID;

fat_ioctl.file_ctx = fd;

status = vos_dev_ioctl(hFat, &fat_ioctl);

return status;

}

Copyright © 2012 Future Technology Devices International Ltd. 466

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Returns a flag indicating if a file handle is a Volume Label entry on FAT32 file system.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file handle is a Volume Label entry

0 if the file handle points to an entry which is not a Volume Label

Example

char checkvolid(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

char status;

// check if fd is a volume label

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_ISVOLUMELABEL;

fat_ioctl.file_ctx = fd;

status = vos_dev_ioctl(hFat, &fat_ioctl);

return status;

}

Description

Returns a flag indicating if a file or directory is read only.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file or directory is read only

0 if the file handle points to an entry which is not read only

Example

char checkreadonly(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

char status;

// check if fd is read only

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_ISREADONLY;

fat_ioctl.file_ctx = fd;

status = vos_dev_ioctl(hFat, &fat_ioctl);

return status;

}

Copyright © 2012 Future Technology Devices International Ltd. 467

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Returns a flag indicating if a file handle points to a file rather than a directory or a Volume ID.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file handle is a file

0 if the file handle points to an entry which is not a file

Example

char checkfile(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

char status;

// check if fd is a file

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_ISFILE;

fat_ioctl.file_ctx = fd;

status = vos_dev_ioctl(hFat, &fat_ioctl);

return status;

}

Description

Returns a flag indicating if a file handle points to a directory rather than a file or a Volume ID.

Parameters

The file_ctx member of the fat_ioctl_cb_t IOCTL structure must contain a valid FAT File Handle
pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file handle is a directory

0 if the file handle points to an entry which is not a directory

Example

char checkdir(VOS_HANDLE hFat, FILE *fd)

{

fat_ioctl_cb_t fat_ioctl;

char status;

// check if fd is a file

fat_ioctl.ioctl_code = FAT_IOCTL_DIR_ISDIRECTORY;

fat_ioctl.file_ctx = fd;

status = vos_dev_ioctl(hFat, &fat_ioctl);

return status;

}

Copyright © 2012 Future Technology Devices International Ltd. 468

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

unsigned char fatdrv_init (

unsigned char devNum

);

Description

Initialise the FAT driver and registers the driver with the Device Manager.

Parameters

devNum

The device number to use when registering the FAT driver with the Device Manager.

Returns

The function returns zero if successful and non-zero if it could not initialise the driver or allocate
memory for the driver.

Comments

Memory is allocated dynamically for an instance of the FAT driver when this call is made. It is never
freed by the driver.

4.2.2.6.1.4 FAT File System API

The FAT File System API provides direct access to the file system commands.

Initialisation Calls

fat_init() Initialise the FAT API

fat_time() Sets the create, modify and access time
information for a file or directory

fat_open() Open the FAT API to use a Mass Storage Interface
handle and partition on the device

fat_close() Close the FAT API

File System Calls

fat_freeSpace() Obtain the free space available on the device

fat_capacity() Get the total capacity

fat_bytesPerCluster() Get the number of bytes per cluster

fat_bytesPerSector() Return the number of bytes in a sector

fat_getFSType() Get the file system type

fat_getVolumeID Find the Volume ID of the file system

fat_getVolumeLabel Find the Volume Label for FAT12 and FAT16 file
system formats

File Functions

fat_fileOpen() Open a file and return a handle to the file

fat_fileClose() Close a file using a file handle

fat_fileSeek() Seek to a relative position in a file

fat_fileSetPos() Set the current position in a file

fat_fileTell() Return the current position in a file

fat_fileRewind() Set the current position to the start of a file

Copyright © 2012 Future Technology Devices International Ltd. 469

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

fat_fileTruncate() Truncate a file at the current position

fat_fileFlush() Flush open file to disk

fat_fileDelete() Delete a file

fat_fileRename() Rename a file

fat_fileMod() Modify the attributes of a file

fat_fileRead() Read from a file

fat_fileWrite() Write to a file

fat_fileCopy() Copy a file

Directory Table Functions

fat_dirTableFind() Finds a file or directory with a specified name in
the current directory

fat_dirTableFindFirst() Finds the first file or directory in the current
directory

fat_dirTableFindNext() Finds subsequent files or directories in the current
directory

fat_dirChangeDir() Changes the current directory

fat_dirCreateDir() Makes a new directory

fat_dirDirIsEmpty() Tests whether a directory is empty

fat_dirEntryIsValid() Tests if a file handle is valid

fat_dirEntryIsVolumeID() Tests if a file handle is a volume ID

fat_dirEntryIsReadOnly() Tests if a file handle is read only

fat_dirEntryIsFile() Tests if a file handle is a valid file

fat_dirEntryIsDirectory() Tests if a file handle is a valid directory

fat_dirEntrySize() Obtains the size of a file

fat_dirEntryTime() Gets the create, modify and access time
information for a file or directory

Syntax

void fat_init(void)

Description

Initialises the FAT API. This need only be called once before any other FAT API call is made. It need
only be called after kernel initialisation takes place with vos_init(), but may be called from a user
application after the scheduler is started with vos_start_scheduler().

Parameters

The fat_init() function takes no parameters.

Return Value

The fat_init() function returns no data.

Syntax

fat_context *fat_open(VOS_HANDLE hMsi, unsigned char partition, unsigned char *status)

Description

Opens the FAT API and attaches a Mass Storage Interface device to the API. This can be a BOMS

Copyright © 2012 Future Technology Devices International Ltd. 470

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Class, SD Card or other device conforming to the Mass Storage Interface (MSI) defined in header file
msi.h. The MSI device must be initialised and opened with vos_dev_open(). The partition number to
use on the disk is specified along with the handle of the MSI device in a special

Parameters

hMsi

Handle to an open, initialised Mass Storage Device.

partition

Partition number on the device to attach to. A value of zero will attach to the first partition
(partition 1).

status

The status returned from the function. May be NULL if value not required to be checked.

Return Value

The function returns a fat_context pointer. This is a handle to the instance of the FAT API used to
address the correct MSI device. This is used to address the FAT API in most calls to the API.

A status value is passed back in the status parameter. If this is not used then it may be set to NULL
and will be ignored by fat_open. The values are

Example

fat_context *opendisk(VOS_HANDLE hUsbHost, VOS_HANDLE hBoms)

{

 usbhost_ioctl_cb_t hc_iocb; // ioctl block

 usbhost_ioctl_cb_class_t hc_iocb_class;

 usbhost_device_handle_ex ifDev = 0; // handle to the next device interface

 msi_ioctl_cb_t boms_cb;

 boms_ioctl_cb_attach_t boms_att;

 fat_context fatContext = NULL;

 hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;
 hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;
 hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

 usbhost_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

 usbhost_iocb.handle.dif = NULL;

 usbhost_iocb.set = &hc_iocb_class;

 usbhost_iocb.get = &ifDev;

 if (vos_dev_ioctl(hUsbHost, &usbhost_iocb) != USBHOST_OK) return NULL;

 boms_cb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

 boms_cb.set = &boms_att;

 boms_att.hc_handle = hUsbHost;

 boms_att.ifDev = ifDev;

 status = vos_dev_ioctl(hBoms, &boms_cb);

 if (status == MSI_OK)

 {

 fat_init();

 fatContext = fat_open(hBoms, 0, &status);

 if (status != FAT_OK)

 {

 // open failed

 return NULL;

 }

 }

 else

 {

 // BOMS attach failed

 return NULL;

 }
 // success

Copyright © 2012 Future Technology Devices International Ltd. 471

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 return fatContext;

}

closedisk(fat_context fatContext)

{

 fat_close(fatContext);

}

Syntax

void fat_close(fat_context *fat_ctx)

Description

Closes the FAT API and detaches it from the Mass Storage Interface device.

Parameters

fat_ctx

Pointer to the instance of the FAT API to close.

Return Value

There is no value returned.

Example

See example in fat_open().

Syntax

unsigned char fat_freeSpace(fat_context *fat_ctx, unsigned long *bytes_h, unsigned long *bytes_l, unsigned char scan)

Description

Will scan a disk to calculate the amount of free space available in bytes. A complete scan of the disk
will be performed if necessary or requested.

A full scan can take a considerable time on large disks or disks with small cluster sizes. Typically it will
complete in 10 to 30 seconds but can take over 60 seconds on some disks.

Parameters

fat_ctx

Pointer to the instance of the FAT API

bytes_h, bytes_l

Two 32 bit long values to receive the 64 bit count of free space on the disk

scan

One of the following values to determine the type of free space scan

FAT_FREESPACE_NO_SCAN Do not perform a scan but use data from previous scans. If
no data is available then free space count is undefined.

FAT_FREESPACE_SCAN Scan only if a scan has not previously been performed.

FAT_FREESPACE_FORCE_SCAN Force a scan of the disk to be performed.

Return Value

The 64 bit count of free space is returned in the bytes_h and bytes_l parameters.

The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

Copyright © 2012 Future Technology Devices International Ltd. 472

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 unsigned long bytes_l, bytes_h;

 fat_freeSpace(fatContext, &bytes_h, &bytes_l, FAT_FREESPACE_SCAN);

Syntax

unsigned char fat_capacity(fat_context *fat_ctx, unsigned long *bytes_h, unsigned long *bytes_l)

Description

This will calculate the total capacity of a disk partition. This is different from the total formatted
capacity as it does not take account of reserved areas of the disk.

Parameters

fat_ctx

Pointer to the instance of the FAT API

bytes_h, bytes_l

Two 32 bit long values to receive the 64 bit count of bytes on the disk

Return Value

The 64 bit count of disk capacity is returned in the bytes_h and bytes_l parameters.

The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

 unsigned long bytes_l, bytes_h;

 fat_capacity(fatContext, &bytes_h, &bytes_l);

Syntax

unsigned char fat_bytesPerCluster(fat_context *fat_ctx, unsigned long *bytes)

Description

This will calculate the number of bytes per cluster for a disk.

Parameters

fat_ctx

Pointer to the instance of the FAT API

bytes

Pointer to variable to receive the calculated number of bytes in a cluster

Return Value

The 32 bit count of bytes in a cluster in the bytes parameter.

The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

 unsigned long bytes;

 fat_bytesPerCluster(fatContext, &bytes);

Copyright © 2012 Future Technology Devices International Ltd. 473

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

unsigned char fat_bytesPerSector(fat_context *fat_ctx, unsigned short *bytes)

Description

This will calculate the number of bytes per sector for a disk.

Parameters

fat_ctx

Pointer to the instance of the FAT API

bytes

Pointer to variable to receive the calculated number of bytes in a sector

Return Value

The 16 bit count of bytes in a sector in the bytes parameter.

The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

 unsigned short bytes;

 fat_bytesPerSector(fatContext, &bytes);

Syntax

unsigned char fat_getFSType(fat_context *fat_ctx)

Description

This will determine the file system type for the attached disk.

Parameters

fat_ctx

Pointer to the instance of the FAT API

Return Value

The file system type is encoded in the return value. The file system type is one of the types defined
in FAT File System Types.

Example

 if (fat_getFSType(fatContext) == FAT32)

 {

 // FAT 32

 }

Syntax

unsigned char fat_getVolumeID(fat_context *fat_ctx, unsigned long *volID)

Description

This will return the volume ID for the attached disk. The volume ID is a unique value to identify the
file system assigned during a format operation.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 474

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

fat_ctx

Pointer to the instance of the FAT API

volID

Pointer to a 32 bit variable to receive the volume ID value

Return Value

The 32 bit volume ID is returned in the volID parameter.

The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

 unsigned long volid;

 fat_getVolumeID(fatContext, &volid);

 if (volid == 0x43234534)

 {

 // This is my disk!

 }

Syntax

unsigned char fat_getVolumeLabel(fat_context *fat_ctx, char *volLabel)

Description

This will return the volume label for the attached disk. The volume label is an 11 character string
stored in the boot sector of a disk file system. It may not be valid on FAT32 file systems being
replaced by a volume label entry in the root directory of the disk.

Parameters

fat_ctx

Pointer to the instance of the FAT API

volLabel

Pointer to an 11 byte buffer which receives the volume label

Return Value

The 11 byte volume label is returned to the buffer pointer to by the volLabel parameter.

The return value will be the following:

FAT_OK successfully moved the file pointer to the new location

Example

 char label[12];

 fat_getVolumeLabel(fatContext, label);

 label[11] = '\0';

 if (strcmp(label, "NO NAME ") == 0)

 {

 // label not used

 }

Syntax

unsigned char fat_fileOpen(fat_context *fat_ctx, file_context_t *file_ctx, unsigned char *name, unsigned char mode)

Description

Copyright © 2012 Future Technology Devices International Ltd. 475

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Opens a file or directory by name in the current directory. It can be used for opening files for read,
write access or simply obtaining a handle to a file without allowing access to the contents.

Directories may only be opened by mode FILE_MODE_HANDLE. This can be used to rename
directories (with fat_fileRename()) or change the attributes of a directory (with fat_fileMod()).

Parameters

fat_ctx

Pointer to the instance of the FAT API

file_ctx

Pointer to memory allocated to store a file handle

name

The filename member shall contain a pointer to an 11 character file name. It must use
space characters (ASCII 32 decimal or 0x20) as padding. Filename extensions must start
on character 9 in the 11 character filename string.

mode

The mode member is one of the File Mode Values defined in the FAT File Handle structure.

Returns

The following value may be returned by this call:

FAT_OK successful file open
FAT_NOT_FOUND file system type invalid or file system not attached, open a file for reading
which does not exist
FAT_INVALID_FILE_TYPE attempt to open a volume ID directory entry or directory as a file
FAT_READ_ONLY opening a read only file with a write or append mode
FAT_DISK_FULL no free clusters found in which to store file data
FAT_DIRECTORY_TABLE_FULL root directory on FAT12 and FAT16 disks has no free entries
FAT_INVALID_PARAMETER the set value of the fat_ioctl_cb_t IOCTL structure is NULL

A FAT File Handle is returned in the file_ctx parameter. This is used for subsequent access to the
file. The memory is allocated in the calling procedure.

Example

file_context_t *openlog(fat_context fatctx)

{

char file[11] = "MYBIGDATLOG"; // mybigdat.log

file_context_t *fd;

fd = malloc(sizeof(file_context_t));

if (fat_fileOpen(fatctx, fd, file, FILE_MODE_APPEND_PLUS) == FAT_OK)

{

return fd;

}

else

{

return NULL;

}

}

void closelog(file_context_t *fd)

{

fat_fileClose(fd);

free(fd);

}

Syntax

unsigned char fat_fileClose(file_context_t *file_ctx)

Description

Copyright © 2012 Future Technology Devices International Ltd. 476

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Closes a file and commits any changes to the file and it's directory table entry (size, filename,
attributes) to the disk.

Parameters

file_ctx

Pointer to file handle of file to close.

Returns

There is no data returned by this call. The return value will be the following:

FAT_OK successfully received current file pointer

Example

See example in fat_fileOpen()

Syntax

unsigned char fat_fileSeek(file_context_t *file_ctx, long offset, unsigned char mode)

Description

Seeks to a specified offset in a file. The offset can be relative to the start, current file pointer or end
of a file.

Parameters

file_ctx

Pointer to a valid FAT File Handle

offset

A signed value with the desired number of bytes to seek

mode
Type of seek to perform. Takes a value depending on where the relative position of current
file pointer to the offset member is calculated. The new position in the file is calculated as
follows:

FAT_SEEK_CUR The offset is added to the current file position

FAT_SEEK_END The offset must be negative and the new position is the end of
file plus the offset value

FAT_SEEK_SET The offset must be positive and the file position is set to the
offset from the start of file

Returns

The return value may be one of the following:

FAT_OK successfully moved the file pointer to the new location
FAT_EOF the new file pointer is beyond the EOF of the current file or is negative

Example

char skipon(file_context_t *fd)

{

// move 256 bytes further on in a file

if (fat_fileSeek(fd, 256, FAT_SEEK_CUR) != FAT_OK)

{

return -1;

}

return 0;

}

Copyright © 2012 Future Technology Devices International Ltd. 477

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

unsigned char fat_fileSetPos(file_context_t *file_ctx, unsigned long offset)

Description

Sets the current position in a file to a specified offset.

Parameters

file_ctx

Pointer to a valid FAT File Handle

offset

An unsigned value with the desired number of bytes to seek from the start of the file

Returns

The return value may be one of the following:

FAT_OK successfully moved the file pointer to the new location
FAT_EOF the new file pointer is beyond the EOF of the current file or is negative

Example

char skipheader(file_context_t *fd)

{

// move 256 bytes in to a file

if (fat_fileSetPos(fd, 256) != FAT_OK)

{

return -1;

}

return 0;

}

Syntax

unsigned char fat_fileTell(file_context_t *file_cxt, unsigned long *offset)

Description

Gets the current position in a file.

Parameters

file_ctx

Pointer to a valid FAT File Handle

offset

Pointer to variable to receive the current position in a file

Returns

The offset parameter receives the current location in the file as a 32 bit unsigned value.

The return value may be one of the following:

FAT_OK successfully moved the file pointer to the new location

Example

unsigned long getposition(file_context_t *fd)

{

unsigned long pos;

// get position in file

if (fat_fileTell(fd, &pos) == FAT_OK)

Copyright © 2012 Future Technology Devices International Ltd. 478

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

{

return pos;

}

return -1;

}

Syntax

unsigned char fat_fileRewind(file_context_t *file_ctx)

Description

Sets the current position in a file to the start.

Parameters

file_ctx

Pointer to a valid FAT File Handle

Returns

The return value may be one of the following:

FAT_OK successfully moved the file pointer to the new location

Example

char back2start(file_context_t *fd)

{

// move to start of a file

if (fat_fileRewind(fd) != FAT_OK)

{

return -1;

}

return 0;

}

Syntax

unsigned char fat_fileTruncate(file_context_t *file_ctx)

Description

Sets the current position in a file as EOF.

Parameters

file_ctx

Pointer to a valid FAT File Handle

Returns

The return value may be one of the following:

FAT_OK successfully moved the file pointer to the new location

Example

char cutat64k(file_context_t *fd)

{

// truncate file at 64k

if (fat_fileSetPos(fd, 65535) == FAT_OK)

{

if (fat_fileTruncate(fd) == FAT_OK)

{

Copyright © 2012 Future Technology Devices International Ltd. 479

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

return 0;

}

}

return -1;

}

Syntax

unsigned char fat_fileFlush(file_context_t *file_ctx)

Description

Commits any changes to the file and it's directory table entry (size, filename, attributes) to the disk.

Parameters

file_ctx

Pointer to file handle of file to flush.

Returns

There is no data returned by this call. The return value will be the following:

FAT_OK successfully received current file pointer

Example

if (fat_fileOpen(fatContext, &FILECT, filename, FILE_MODE_APPEND) == FAT_OK)

{

// repeat until signalled to finish

while(extSignal)

{

// write 512 bytes of data from UART to disk

if (fat_fileWrite(&FILECT, 512, NULL, hUART, NULL) != FAT_OK) // write from serial port

{

break;

}

// commit file changes to disk

if (fat_fileFlush(&FILECT) != FAT_OK)

{

break;

}

}

}

fat_fileClose(&FILECT);

Syntax

unsigned char fat_fileDelete(file_context_t *file_ctx)

Description

Deletes a file or directory using a FAT File Handle obtained from fat_fileOpen(). The delete function
does not delete a file or directory based on a name but rather a handle. The file or directory must be
opened first and then deleted. The file or directory must be opened with a file mode of
FILE_MODE_HANDLE to ensure no changes to the file are made before deletion.

The file handle must be closed afterwards with fat_fileClose(). This will also synchronise the directory
table and remove the file or directory from there.

Directories to be deleted must be empty - have no files or sub-directories.

Parameters

file_ctx

Pointer to a valid FAT File Handle

Returns

Copyright © 2012 Future Technology Devices International Ltd. 480

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully deleted the file
FAT_INVALID_FILE_TYPE file not opened with mode FILE_MODE_HANDLE
FAT_EXISTS the file handle points to a directory that is not empty

Example

char delfile(fat_context fatctx)

{

char file[11] = "MYBIGDATLOG"; // mybigdat.log

file_context_t fd;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// delete file

if (fat_fileDelete(&fd) != FAT_OK)

{

return -1;

}

// free FILE pointer

fat_fileClose(&fd);

}

return 0;

}

Syntax

unsigned char fat_fileRename(file_context_t *file_ctx, char *name)

Description

Renames a file or directory using a FAT File Handle obtained from fat_fileOpen(). The rename function
does not rename a file or directory based on a name but rather a handle. The file or directory must
be opened first and then renamed. The file or directory must be opened with a file mode of
FILE_MODE_HANDLE to ensure no changes to the file are made before deletion.

The file handle must be closed or the changes committed afterwards with fat_fileClose() or
fat_fileFlush(). This will synchronise the directory table and rename the file or directory on the disk.

Parameters

file_ctx

Pointer to a valid FAT File Handle

name

New name of file or directory

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully renamed the file
FAT_INVALID_FILE_TYPE file not opened with mode FILE_MODE_HANDLE

Example

char renamelog(fat_context fatctx)

{

char filesrc[11] = "MYBIGDATLOG"; // mybigdat.log

char filedst[11] = "MYBIGDATBAK"; // mybigdat.bak

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, filesrc, FILE_MODE_HANDLE) == FAT_OK)

{

fat_fileRename(&fd, filedest) == FAT_OK)

{

Copyright © 2012 Future Technology Devices International Ltd. 481

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// rename successful

status = 0;

}

fat_fileClose(&fd);

}

return status;

}

Syntax

unsigned char fat_fileMod(file_context_t *file_ctx, unsigned char attr)

Description

The mod function will change the attributes of a file or directory to the that specified in the attr
parameter. The file or directory must be opened first with a file mode other than FILE_MODE_READ.

Closing or committing the file or directory after the mod with fat_fileClose() or fat_fileFlush() is
required to synchronise the directory table entry.

Parameters

file_ctx

Pointer to a valid FAT File Handle

attr

The new attribute mask for the file or directory. Bits may be one or more of the following.

FAT_ATTR_READ_ONLY Read only attribute

FAT_ATTR_HIDDEN Hidden file attribute

FAT_ATTR_SYSTEM System file attribute

FAT_ATTR_ARCHIVE Archive flag attribute

FAT_ATTR_DIRECTORY Directory bit
Must be set if attributes of a directory are changed, must be clear
if a file attributes are changed

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully changed the attributes of the file
FAT_INVALID_FILE_TYPE file opened with mode FILE_MODE_READ

Example

char readonlylogfile(fat_context fatctx)

{

char file[11] = "MYBIGDATLOG"; // mybigdat.log

file_context_t fd;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// set file read only

if (fat_fileMod(&fd, FAT_ATTR_READ_ONLY) != FAT_OK)

{

return -1;

}

// free FILE pointer

fat_fileClose(&fd);

}

return 0;

}

Copyright © 2012 Future Technology Devices International Ltd. 482

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Syntax

unsigned char fat_time(unsigned long time)

Description

Sets the time value for subsequent create, modify or accesses of files or directories. The encoded
date and time is described in the FAT File System Date and Times topic.

Parameters

time

Encoded date and time value for file accesses

Return Value

The return value will be the following:

FAT_OK successfully received current file size

Example

// jun 7th 2010 12:00:00 - 0x3cc76000

fat_time(0x3cc76000);

Syntax

unsigned char fat_dirTableFind(fat_context *fat_ctx, file_context_t *file_ctx, char *name)

Description

Searches in the current directory for a file or directory matching the name specified in the parameters
of the call. The filename is specified in the name parameter.

Wildcards are not permitted. To search through filenames and apply search conditions use
fat_dirTableFindFirst() and fat_dirTableFindNext().

Parameters

fat_ctx

Pointer to the instance of the FAT API

file_ctx

Pointer to a FAT File Handle structure

name

Contains a pointer to an 11 character file name. It must use space characters (ASCII 32
decimal or 0x20) as padding.

Returns

The return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_NOT_FOUND a matching file was not found
FAT_EOF no matching file was found but directory table is full

A FAT File Handle is returned in the file_ctx parameter if a matching file is found. This can be used
for subsequent access to the file or directory. The file handle is opened with a file mode of
FILE_MODE_HANDLE.

Example

char checkforfile(fat_context fatctx)

{

char file[11] = "SVNFILES ";

file_context_t fd;

Copyright © 2012 Future Technology Devices International Ltd. 483

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (fat_dirTableFind(fatctx, &fd, file)

{

// file exists

return 0;

}

return 1;

}

Syntax

unsigned char fat_dirTableFindFirst(fat_context *fat_ctx, file_context_t *file_ctx)

Description

Searches in the current directory for all files and directories. Initialises a search whereas
fat_dirTableFindNext() is used to continue searching through the files in the current directory.

Parameters

fat_ctx

Pointer to the instance of the FAT API

file_ctx

Pointer to a FAT File Handle structure

Returns

The return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_NOT_FOUND a matching file was not found
FAT_EOF no matching file was found but directory table is full

A FAT File Handle is returned in the file_ctx parameter if any file is found. This can be used for
subsequent access to the file or directory. The file handle is opened with a file mode of
FILE_MODE_HANDLE. Subsequent calls to fat_dirTableFindNext() must reuse the same file handle.

The name of the file found is the first 11 bytes of the file_ctx pointer.

Example

char processXfiles(fat_context fatctx)

{

char file[11];

file_context_t fd;

char *file = (char*)&fd;

if(fat_dirTableFindFirst(fatctx, &fd) == FAT_OK)

{

// file exists

do

{

if (file[0] == 'X')

{

// process files beginning with X

}

} while (fat_dirTableFindNext(fatctx, &fd) == FAT_OK);

}

}

Syntax

unsigned char fat_dirTableFindNext(fat_context *fat_ctx, file_context_t *file_ctx)

Description

Copyright © 2012 Future Technology Devices International Ltd. 484

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Searches in the current directory for subsequent files and directories continuing a
fat_dirTableFindFirst() search.

Parameters

fat_ctx

Pointer to the instance of the FAT API

file_ctx

Pointer to a FAT File Handle structure

Returns

The return value will be one of the following:

FAT_OK successfully received current file pointer
FAT_NOT_FOUND a matching file was not found
FAT_EOF no matching file was found but directory table is full

The FAT File Handle in the file_ctx parameter is updated. This can be used for subsequent access
to the file or directory. The file handle is opened with a file mode of FILE_MODE_HANDLE.
Subsequent calls to fat_dirTableFindNext() must reuse the same file handle.

The name of the file found is the first 11 bytes of the file_ctx pointer.

Example

See example in fat_dirTableFindFirst()

Syntax

unsigned char fat_dirChangeDir(fat_context *fat_ctx, unsigned char *name)

Description

Changes the current directory to a sub-directory specified in the name parameter.

A special case value of ".. " (2 dots followed by 9 spaces) may be used to move up to a
higher level directory or NULL to the top level directory.

Parameters

fat_ctx

Pointer to the instance of the FAT API

name

The destination directory name. The value of NULL will change the current directory to the
volume's root directory.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully changed the current directory
FAT_NOT_FOUND directory not changed as destination directory not found

Example

char changetoroot(fat_context fatctx)

{

if (fat_dirChangeDir(fatctx, NULL) == FAT_OK)

{

return 0;

}

return 1;

}

char changeup(fat_context fatctx)

{

Copyright © 2012 Future Technology Devices International Ltd. 485

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

char file[11] = ".. ";

if (fat_dirChangeDir(fatctx, file) == FAT_OK)

{

return 0;

}

return 1;

}

char changetosubdir(fat_context fatctx)

{

char file[11] = "SVNFILES ";

if (fat_dirChangeDir(fatctx, file) == FAT_OK)

{

return 0;

}

return 1;

}

Syntax

unsigned char fat_dirCreateDir(fat_context *fat_ctx, unsigned char *name)

Description

Make a new sub-directory in the current directory. The name is specified in the name parameter.

Parameters

fat_ctx

Pointer to the instance of the FAT API

name

The new directory name. This must not exist in the current directory.

Returns

There is no data returned by this call. The return value will be one of the following:

FAT_OK successfully created the new directory
FAT_EXISTS directory not created as a directory or file with that name already exists
FAT_DIRECTORY_TABLE_FULL a FAT16 or FAT12 file system has the root directory table full -
this is a fixed size
FAT_DISK_FULL there were no free clusters found for creating a new directory table

Example

char makesub(fat_context fatctx)

{

char file[11] = "SVNFILES ";

if (fat_dirCreateDir(fatctx, file) == FAT_OK)

{

return 0;

}

return 1;

}

Syntax

unsigned long fat_dirEntrySize(file_context_t *file_ctx)

Copyright © 2012 Future Technology Devices International Ltd. 486

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Obtains the size of a file.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file.

Returns

The return value is the size of the file in bytes.

Example

unsigned long getsize(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

unsigned long size = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if file is read only

size = fat_dirEntrySize(&fd);

}

return size;

}

Syntax

unsigned short fat_dirEntryTime(file_context_t *file_ctx, unsigned char offset)

Description

Obtains the create, modification or last access dates or times of a file or directory. The encoded
dates and times are described in the FAT File System Date and Times topic.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file.

offset

The offset parameter is one of the following:

FAT_DIRENTRYTIME_CREATE_DATE File create date

FAT_DIRENTRYTIME_CREATE_TIME File create time

FAT_DIRENTRYTIME_MODIFY_DATE File modify date

FAT_DIRENTRYTIME_MODIFY_TIME File modify time

FAT_DIRENTRYTIME_ACCESS_DATE File last access date

Returns

The return value is a 16 bit value containing either a date or a time encoded value described in the
FAT File System Date and Times topic.

Example

unsigned long getmodtime(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

unsigned long date = -1;

Copyright © 2012 Future Technology Devices International Ltd. 487

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// get modify date and time

date = fat_dirEntryTime(&fd, FAT_DIRENTRYTIME_MODIFY_DATE);

date <<= 16;

date |= fat_dirEntryTime(&fd, FAT_DIRENTRYTIME_MODIFY_TIME);

}

return date;

}

Syntax

unsigned char fat_dirDirIsEmpty(file_context_t *file_ctx)

Description

Returns a flag indicating if a directory is empty.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the directory is empty

0 if there are one or more files or directories

Example

char logdirexists(fat_context fatctx)

{

char file[11] = "LOGDIR "; // logdir

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if directory is empty

status = fat_dirDirIsEmpty(&fd);

}

return status;

}

Syntax

unsigned char fat_dirEntryIsValid(file_context_t *file_ctx)

Description

Returns a flag indicating if a file or directory is valid.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file or directory is valid

Copyright © 2012 Future Technology Devices International Ltd. 488

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

0 if the file handle points to an entry which is not a file or directory

Example

char checkfile(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if file is valid

status = fat_dirEntryIsValid(&fd);

}

return status;

}

Syntax

unsigned char fat_dirEntryIsVolumeLabel(file_context_t *file_ctx);

Description

Returns a flag indicating if a file handle is a Volume Label entry on FAT32 file system.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file handle is a Volume Label entry

0 if the file handle points to an entry which is not a Volume Label

Example

char checkvolid(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if file is a volume label

status = fat_dirEntryIsVolumeID(&fd);

}

return status;

}

Syntax

unsigned char fat_dirEntryIsReadOnly(file_context_t *file_ctx)

Description

Returns a flag indicating if a file or directory is read only.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file or directory.

Copyright © 2012 Future Technology Devices International Ltd. 489

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns

There is no data returned by this call. The return value will be the following:

1 if the file or directory is read only

0 if the file handle points to an entry which is not read only

Example

char checkreadonly(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if file is read only

status = fat_dirEntryIsReadOnly(&fd);

}

return status;

}

Syntax

unsigned char fat_dirEntryIsFile(file_context_t *file_ctx)

Description

Returns a flag indicating if a file handle points to a file rather than a directory or a Volume ID.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file handle is a file

0 if the file handle points to an entry which is not a file

Example

char checkfile(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if handle is a file

status = fat_dirEntryIsFile(&fd);

}

return status;

}

Syntax

unsigned char fat_dirEntryIsDirectory(file_context_t *file_ctx)

Description

Copyright © 2012 Future Technology Devices International Ltd. 490

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns a flag indicating if a file handle points to a directory rather than a file or a Volume ID.

Parameters

file_ctx

Must contain a valid FAT File Handle pointing to a file or directory.

Returns

There is no data returned by this call. The return value will be the following:

1 if the file handle is a directory

0 if the file handle points to an entry which is not a directory

Example

char checkdir(fat_context fatctx)

{

char file[11] = "FILETESTDAT";

file_context_t fd;

char status = -1;

if (fat_fileOpen(fatctx, &fd, file, FILE_MODE_HANDLE) == FAT_OK)

{

// check if handle is a directory

status = fat_dirEntryIsDirectory(&fd);

}

return status;

}

Syntax

unsigned char fat_fileRead(file_context_t *file_ctx, unsigned long length, char *buffer, VOS_HANDLE hOutput, unsigned long *bytes_read)

Description

Reads a file from a disk to either a buffer or streams to an other device handle.

Parameters

file_ctx

Pointer to file handle of file to read.

length

Number of bytes to read from file.

buffer

Pointer to buffer which receives data from file. This buffer is only used if hOutput is NULL.

hOutput

Handle of device where data from file is sent using vos_dev_write(). The buffer destination
is used if this is NULL.

bytes_read

Pointer to variable where the number of bytes read is written. If this is NULL then it is
ignored.

Returns

If hOutput is NULL, the buffer will be updated with data from the file. Otherwise vos_dev_write() is
used to send the data to a device driver.

The return value will be one the following:

FAT_OK successfully received current file pointer
FAT_NOT_OPEN file handle is not an open file
FAT_ERROR a file system error was encountered
FAT_EOF the end of the file was reached

Copyright © 2012 Future Technology Devices International Ltd. 491

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

FAT_MSI_ERROR a transport layer error was returned

Example

Stream from a file to a device handle.

fat_context fatContext; // requires setup

file_context_t FILE;

VOS_HANDLE hUart; // requires setup

char filename = "SOURCE TXT";

unsigned char status;

unsigned int size;

// Fat handle for the file.

status = fat_dirTableFind(fatContext, &FILE, filename);

if (status != FAT_OK)

{

 return -1;

}

else

{

 // Get the size of the file

 size = fat_dirEntrySize(&FILE);

 // Open the selected file for reading...

 status = fat_fileOpen(fatContext, &FILE, filename, FILE_MODE_READ);

 if (status == FAT_INVALID_FILE_TYPE)

 {

 return -2;

 }

 else

 {

 // Read and redirect output to UART interface

 status = fat_fileRead(&FILE, size, NULL, hUart, NULL);

 if (status != FAT_OK)

 {

 return -3;

 }

 }

 fat_fileClose(&FILE); // Close the file after reading.

}

Example

Read from a file into a buffer.

fat_context fatContext; // requires setup

file_context_t FILE;

char filename = "BUFFER TXT";

unsigned char status;

char *buffer;

unsigned int size;

unsigned int actual;

// Fat handle for the file.

status = fat_dirTableFind(fatContext, &FILE, filename);

if (status != FAT_OK)

{

 return -1;

}

else

{

 // Get the size of the file

 size = fat_dirEntrySize(&FILE);

 if (size < 1024)

 {

 buffer = malloc(size);

 if (buffer == NULL)

Copyright © 2012 Future Technology Devices International Ltd. 492

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

 {

 return -10;

 }

 // Open the selected file for reading...

 status = fat_fileOpen(fatContext, &FILE, filename, FILE_MODE_READ);

 if (status == FAT_INVALID_FILE_TYPE)

 {

 return -2;

 }

 else

 {

 // Read direct into buffer

 status = fat_fileRead(&FILE, size, buffer, NULL, &actual);

 if (status != FAT_OK)

 {

 return -3;

 }

 }

 fat_fileClose(&FILE); // Close the file after reading.

 }

}

Syntax

unsigned char fat_fileWrite(file_context_t *file_ctx, unsigned long length, char *buffer, VOS_HANDLE hOutput, unsigned long *bytes_written)

Description

Writes a file to a disk from either a buffer or streams to an other device handle.

Parameters

file_ctx

Pointer to file handle of file to write.

length

Number of bytes to write to the file.

buffer

Pointer to buffer which is used as a source of data for file. This buffer is only used if hOutput
is NULL.

hOutput

Handle of device where data is received using vos_dev_read(). The buffer source is used if
this is NULL.

bytes_read

Pointer to variable where the number of bytes read is written. If this is NULL then it is
ignored.

Returns

If hOutput is NULL, the buffer will be used a for data sent to the file. Otherwise vos_dev_read() is
used to receive data from a device driver.

The return value will be one the following:

FAT_OK successfully received current file pointer
FAT_READ_ONLY file is opened for read only
FAT_NOT_OPEN file handle is not an open file
FAT_ERROR a file system error was encountered
FAT_EOF the end of the file was reached
FAT_MSI_ERROR a transport layer error was returned

Example

See example in Still Image Read Operations.

Copyright © 2012 Future Technology Devices International Ltd. 493

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

Write from a buffer into a file.

fat_context fatContext; // requires setup

file_context_t FILE;

char filename = "BUFFER TXT";

unsigned char status;

char buffer[] = {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0};

unsigned int size;

unsigned int actual;

// Fat handle for the file.

status = fat_dirTableFind(fatContext, &FILE, filename);

if (status != FAT_OK)

{

 return -1;

}

else

{

 // Get the size of the file

 size = sizeof(buffer);

 // Open the selected file for reading...

 status = fat_fileOpen(fatContext, &FILE, filename, FILE_MODE_WRITE);

 if (status == FAT_OK)

 {

 // Write from buffer direct into file

 status = fat_fileWrite(&FILE, size, buffer, NULL, &actual);

 if (status != FAT_OK)

 {

 return -3;

 }

 }

 fat_fileClose(&FILE); // Close the file after reading.

 }

}

Syntax

unsigned char fat_fileCopy(file_context_t *src_file_ctx, file_context_t *dest_file_ctx)

Description

Copies a file on a disk. Destination file can be in the same directory as a different name, on the same
disk in a different directory or on another disk.

The source file must be opened for read access with FILE_MODE_READ and the destination file must
be opened for write with FILE_MODE_WRITE. If the destination file exists then all data in it will be
overwritten.

Parameters

src_file_ctx

Pointer to file handle of source file to read.

dest_file_ctx

Pointer to file handle of destination file to write.

Returns

The return value will be one the following:

FAT_OK successfully copied file
FAT_DISK_FULL there is no free space on the destination disk
FAT_NOT_OPEN source or destination file handle is not an open file
FAT_ERROR the bytes per sector on the source and destination disk do not match
FAT_MSI_ERROR a transport layer error was returned

Copyright © 2012 Future Technology Devices International Ltd. 494

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example

Copy a file from one disk to another:

// copy a file from the current directory on disk opened with handle fatContextSrc

// to a file of the same name on the disk with handle fatContextDest

// the name of the file is passed in the filename parameter

unsigned char copyFile(fat_context fatContextSrc, fat_context fatContextDest, char *filename)

{

unsigned char status;

// file handles for source and destination files

file_context_t fileSource;

file_context_t fileDest;

// open source file

status = fat_fileOpen(fatContextSrc, &fileSource, filename, FILE_MODE_READ);

// open (and create) destination file

status = fat_fileOpen(fatContextDest, &fileDest, filename, FILE_MODE_WRITE);

status = fat_fileCopy(&fileSource, &fileDest);

if (status != FAT_OK)

{

// error handler

}

// close the file handles

fat_fileClose(&fileSource);

fat_fileClose(&fileDest);

return status;

}

Syntax

unsigned char fat_dirEntryName(file_context_t *file_ctx, char * filename)

Description

Copies the name of an opened file into the buffer specified by filename parameter.

The buffer must be at least 12 bytes in size. The function will always write 12 bytes of data into the
buffer.

The filename returned will use space characters (ASCII 32 decimal or 0x20) as padding. Filename
extensions will start on character 9 in the 11 character filename string.

Parameters

file_ctx

Pointer to file handle of source file to read.

filename

Pointer to buffer which receives filename.

Returns

The return value will be one the following:

FAT_OK successfully copied name to buffer
FAT_INVALID_PARAMETER pointer to buffer was invalid

Example

Verify a filename:

unsigned char checkname(file_context_t *fileSrc, char *filename)

{

unsigned char status = 0;

char check[12];

char i;

Copyright © 2012 Future Technology Devices International Ltd. 495

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

// source file is opened

status = fat_dirEntryName(&fileSrc, check);

if (status != FAT_OK)

{

// error handler

status = 2;

}

for (i = 0; i < 11; i++)

{

if (filename[i] != check[i])

status = 1;

}

return status;

}

4.2.2.7 APIs

4.2.2.7.1 Firmware Update API

The Firmware Update API provides access to the Reflasher library which can optionally be installed in
the VNC2 FlashROM. Please refer to Application Note AN_159 available from the FTDI website.

At present only an update from a file supplied on a Flash File System is supported.

4.2.2.7.1.1 FirmwareUpdateFATFileSystem

Firmware Update from FAT File System API Hierarchy

Firmware Update API hierarchy:

Firmware Update API

FAT File System

Layered Drivers below FAT file system

The FAT file system must be initialised before calling any functions in the Firmware Update from FAT
File System API.

Library Files

FirmwareUpdateFATFile.a

FAT.a (plus any dependant library files)

Header Files

FirmwareUpdate.h

FAT.h (plus any dependant header files)

Firmware Update API Calls

FirmwareUpdateFATFile() Perform a FlashROM update with a specified file.

FirmwareUpdateFATFileFeedback() Perform a FlashROM update with a specified file.
Provide optional feedback using UART or GPIO
interfaces.

Syntax

unsigned char FirmwareUpdateFATFile(file_context_t *file, unsigned int reflasherAddress);

Description

Performs a Flash update using a ROM file passed from the FAT File System. The ROM file must be

Copyright © 2012 Future Technology Devices International Ltd. 496

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

generated by the VNC2 toolchain and will be checksum protected. The function will verify the
checksum is correct before programming.

The reflasher code will never return from a success operation as new firmware has overwritten the
previous code.

Once programmed, the reflasher library (which is not overwritten with updated code) will attempt to
run the newly installed firmware.

Parameters

file

Pointer to a FAT file system file handle. The file must be opened for read access.

reflasherAddress

The word address of the reflasher code in ROM. This must be linked to the same address
and passed here. It must be programmed above the end of any program that is written into
the FlashROM. The reflasher is described in Application Note AN_159.

The default address of the reflasher is 0x1C000.

Returns

The following value may be returned by this call:

FIRMWARE_UPDATE_INVALID_FILE The file is not a valid ROM file
FIRMWARE_UPDATE_NO_REFLASHER For future use - not used

Example

void doupdate(fat_context fatctx)

{

char file[11] = "MYCODE12ROM"; // mycode12.rom

file_context_t *fd;

fd = malloc(sizeof(file_context_t));

if (fat_fileOpen(fatctx, fd, file, FILE_MODE_READ) == FAT_OK)

{

// Perform update

FirmwareUpdateFATFile(fatctx, 0x1c000);

}

Syntax

unsigned char FirmwareUpdateFATFileFeedback(file_context_t *file, unsigned int reflasherAddress, unsigned short feedback);

Description

Performs a Flash update using a ROM file passed from the FAT File System. This works exactly the
same as FirmwareUpdateFATFile() except that feedback is provided via the UART or GPIO A interface.

If the UART is selected then a dot trail showing progress is sent to the UART. The baud rate and
other settings which are set in the application are not modified. An error during programming will
show an exclamation point (!) and a carriage return signifies that the programming has completed.

For GPIO A output, a mask for which pin(s) are to be used is selected. The pin will toggle on and off
to show progress and light solid if an error occurs, and turn off when programming has completed.

Parameters

file

Pointer to a FAT file system file handle. The file must be opened for read access.

reflasherAddress

The word address of the reflasher code in ROM. This must be linked to the same address
and passed here. It must be programmed above the end of any program that is written into
the FlashROM. The reflasher is described in Application Note AN_159.

The default address of the reflasher is 0x1C000.

Copyright © 2012 Future Technology Devices International Ltd. 497

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

feedback

Feedback method used. Can be one or more of the following:

FIRMWARE_UPDATE_FEEDBACK_NONE - no feedback

FIRMWARE_UPDATE_FEEDBACK_UART - feedback through the UART interface

FIRMWARE_UPDATE_FEEDBACK_GPIO_A - feedback from GPIO outputs. Must also specify
mask to use for which pin(s) to toggle (use FIRMWARE_UPDATE_FEEDBACK_GPIO_A0 to
FIRMWARE_UPDATE_FEEDBACK_GPIO_A7)

Returns

The following value may be returned by this call:

FIRMWARE_UPDATE_INVALID_FILE The file is not a valid ROM file
FIRMWARE_UPDATE_NO_REFLASHER For future use - not used

Example

void doupdate(fat_context fatctx)

{

char file[11] = "MYCODE12ROM"; // mycode12.rom

file_context_t *fd;

fd = malloc(sizeof(file_context_t));

if (fat_fileOpen(fatctx, fd, file, FILE_MODE_READ) == FAT_OK)

{

// Perform update

FirmwareUpdateFATFileFeedback(fatctx, 0x1c000,

FIRMWARE_UPDATE_FEEDBACK_GPIO_A |
FIRMWARE_UPDATE_FEEDBACK_GPIO_A3); // Toggle GPIO A3 during programming

}

4.2.2.7.2 Flash Access API

Flash Access API Hierarchy

Flash Access API hierarchy:

Flash Access API

The Flash Access API allows page access to read and write the Flash ROM. It must not be used to
overwrite an existing program in ROM. All access will be of one page which is 64 words (128 bytes).

Library Files

Flash.a

Header Files

Flash.h

Firmware Update API Calls

flash_writePage() Write a page of data to the FlashROM

flash_readPage() Read a page of data from the FlashROM

4.2.2.7.2.1 flash_writePage()

Syntax

unsigned char flash_writePage(unsigned short page, unsigned char *dataBuffer);

Copyright © 2012 Future Technology Devices International Ltd. 498

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Writes a page of FlashROM from a buffer. The page must not overwrite the application stored in
ROM. The functions will write a complete page each time this function is called therefore the buffer
must be at least 128 bytes in size.

Parameters

page

Page number to write to. This is calculated as the address in words, divide by the page
size..

dataBuffer

128byte buffer which contains the data to be written to the FlashROM.

Returns

The following value may be returned by this call:

FLASH_OK Successful completion
FLASH_INVALID_PAGE The page requested was above the highest page available
(0x800) or below the lowest (0x10)
FLASH_ERASE_ERROR An error occurred while erasing the flash page
FLASH_PROGRAM_ERROR An error occurred during programming a flash page

Example

unsigned char writeSettings(unsigned char *settings)

{

unsigned char status;

status = flash_writePage(0x7f0, settings);

if (status == FLASH_OK)

{

return 0;

}

return -1;

}

4.2.2.7.2.2 flash_readPage()

Syntax

unsigned char flash_readPage(unsigned short page, unsigned char *dataBuffer);

Description

Reads a page of FlashROM to a buffer. The functions will read a complete page each time this
function is called therefore the buffer must be at least 128 bytes in size.

Parameters

page

Page number to read from. This is calculated as the address in words, divide by the page
size..

dataBuffer

128byte buffer which contains the data to be written from the FlashROM.

Returns

The following value may be returned by this call:

FLASH_OK Successful completion
FLASH_INVALID_PAGE The page requested was above the highest page available
(0x800) or below the lowest (0x10)

Example

Copyright © 2012 Future Technology Devices International Ltd. 499

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

unsigned char chackSettings()

{

unsigned char status;

unsigned char check[128];

status = flash_readPage(0x7f0, check);

if (status == FLASH_OK)

{

if ((check[0] == 0xAA) && (check[1] == 0x55))

return 0;

return -2;

}

return -1;

}

4.3 FTDI Libraries

A minimal set of C runtime library functions are provided, from general utility functions and macros to
input/output functions and dynamic memory management functions.

C runtime libraries supported are :

ctype Library

stdio Library

stdlib Library

string Library

errno Library

NOTE: Not all the standard library functions have been included.

All libraries depend on the VOS kernel being linked into an application. The kernel must also be
enabled with the vos_init() call before using the libraries.

4.3.1 ctype

The standard Ctype library functions for testing and mapping characters are implemented:

isalnum, Alphanumeric character

isalpha, An upper or lower case letter.

iscntrl, A control character.

isdigit, A number.

isgraph, Non-space printable character.

islower, A lower case character.

isprint, A printable character.

ispunct, A punctuation mark.

isspace, A white space character.

isupper, An upper case letter.

isxdigit A hexadecimal digit.

Library Hierarchy

Ctype library hierarchy:

Ctype Library

errno Library (optional)

VOS Kernel

Copyright © 2012 Future Technology Devices International Ltd. 500

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Library Files

ctype.a

Optional Libraries:

errno.a

Header Files

ctype.h

config.h (optional)

errno.h (optional)

4.3.1.1 isalnum

Syntax

int isalnum(int c);

Description

The isalnum function tests for any character for which isalpha or isdigit. The c argument is an int, the
value of which the application shall ensure is representable as an unsigned char or equal to the
value of the macro EOF. If the argument has any other value, the behaviour is undefined.

Parameters

c

c is a character to be tested.

Return Value

The isalnum() function returns non-zero for true and zero for false

4.3.1.2 isalpha

Syntax

int isalpha(int c);

Description

The isalpha function tests for any character for which is upper or is lower, or any character that is
one of a locale-specific set of alphabetic characters for which none of iscntrl,isdigit,ispunct,or isspace
is true.

Parameters

c

c is a character to be tested.

Return Value

The isalpha() function returns non-zero for true and zero for false

4.3.1.3 iscntrl

Syntax

int iscntrl(int c);

Description

The iscntrl function tests for any control character, a control character or non-printing character is a

Copyright © 2012 Future Technology Devices International Ltd. 501

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

number in a set, that does not in itself represent a written symbol. All entries in the ASCII table
below code 32 and 127 are of this kind.

Parameters

c

c is a character to be tested.

Return Value

The iscntrl() function returns non-zero for true and zero for false. If the parameter is not in the
domain of the function, the return result is undefined.

4.3.1.4 isdigit

Syntax

int isdigit(int c);

Description

The isdigit function tests for any decimal-digit character.

Parameters

c

c is a character to be tested.

Return Value

The isdigit() function returns non-zero for true and zero for false. If the parameter is not in the
domain of the function, the return result is undefined.

4.3.1.5 isgraph

Syntax

int isgraph(int c);

Description

The isgraph function tests for any printing character except space. All entries in the ASCII table
above code 33 and below 126 are of this kind.

Parameters

c

c is a character to be tested.

Return Value

The isgraph() function returns non-zero for true and zero for false. If the parameter is not in the
domain of the function, the return result is undefined.

4.3.1.6 islower

Syntax

int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of a locale-specific set
of characters for which none of iscntrl, isdigit, ispunct,or isspace is true. In the"C" locale,islower
returns true only for the lowercase letters.

Copyright © 2012 Future Technology Devices International Ltd. 502

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

c

c is a character to be tested.

Return Value

The islower() function returns non-zero for true and zero for false.

4.3.1.7 isprint

Syntax

int isprint(int c);

Description

The isprint function tests for any printing character including space.

Parameters

c

c is a character to be tested.

Return Value

The isprint() function returns non-zero for true and zero for false.

4.3.1.8 ispunct

Syntax

int ispunct(int c);

Description

The ispunct function tests for any printing character that is one of a locale-specific set of punctuation
characters for which neither is space nor isalnum is true.

Parameters

c

c is a character to be tested.

Return Value

The ispunct() function returns non-zero for true and zero for false.

4.3.1.9 isspace

Syntax

int isspace(int c);

Description

The isspace function tests for any character that is a standard white-space character or is one of
special characters for which isalnum is false, such as the standard white-space characters are the
following: space (''), form feed ('\f'), new-line ('\n'), carriage return ('\r'), horizontal tab ('\t'), and
vertical tab ('\v').

Parameters

c

c is a character to be tested.

Copyright © 2012 Future Technology Devices International Ltd. 503

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Return Value

The isspace() function returns non-zero for true and zero for false.

4.3.1.10 isupper

Syntax

int isupper(int c);

Description

The isupper function tests for any character that is an uppercase letter or set of characters for which
none of iscntrl, isdigit, ispunct, or isspace is true.

Parameters

c

c is a character to be tested.

Return Value

The isupper() function returns non-zero for true and zero for false.

4.3.1.11 isxdigit

Syntax

int isxdigit(int c);

Description

The isxdigit function tests for any hexadecimal-digit character.

Parameters

c

c is a character to be tested.

Return Value

The isxdigit() function returns non-zero for true and zero for false.

4.3.2 stdio

The standard ANSI STDIO library functions can be used for standard input/output operations. This
included file operations, formatted output operation, character operations and direct input and
output operations.

File operations work on the FAT file system. Therefore, before using these operations, a device must
be set up and attached to the FAT file system driver. Once complete the fsAttach function should be
called with the handle to the FAT driver to link the stdio library to the device.

Three standard streams are defined: stdin for input streaming; stdout for output streaming; and
stderr which is also an output stream.

Initialisation

The formatted output function, printf, requires that an output device is set up for the formatted
output. This can be a UART or another interface.

The stdioAttach function must be called before using printf to attach to the device. This will initialise
the stdio streams: stdin, stdout and stderr. It is not allowable to set the stdio streams to redirect to
a file system.

The stdio streams may be redirected individually to separate devices.

fsAttach Attach file system handle to stdio library.

Copyright © 2012 Future Technology Devices International Ltd. 504

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

stdioAttach Attach interface to stdin, stdout and stderr streams.

stdinAttach Attach stdin stream.

stdoutAttach Attach stdout stream.

stderrAttach Attach stderr stream.

Operation

Formatted output.

printf Write formatted data to standard output.

Write formatted data to string.

File operations.

fprintf Write formatted data to a file.

fopen Open a file.

fclose Close a file.

feof Check for end-of-file.

ftell Get current position in file.

fflush Flush a file to the disk.

Direct I/O operations.

fread Read from a file.

fwrite Write to a file.

Direct file operations.

remove Delete a file.

rename Rename a file.

Predefined streams.

stdout Standard output stream

stdin Standard input stream

stderr Standard error stream

Library Hierarchy

STDIO library hierarchy:

STDIO Library

errno Library (Optional) File system (FAT File
System Driver)

Stream (UART, SPI and
FIFO Drivers or Layered

Driver)

VOS Kernel

Requirements

FAT and BOMS drivers must be included in a project if file system operations are to be performed, if
they are not required then they may be omitted. Alternatively, other file systems or transport layers
may be used if required.

If stdio streams are used then a suitable communication driver (UART, SPI Slave etc) must be
included and configured for use.

Example

Copyright © 2012 Future Technology Devices International Ltd. 505

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

1) Attaching to a FAT file system and opening a file.

// Here hFAT is a handle to an attached FAT file system driver

fsAttach (hFAT);

After attaching the FAT layered device driver file operations as shown below can be performed. If the
 fsAttach is not called or is successful, operation of the following calls are undefined.

fp = fopen ("test.txt","w+");

2) Setting up stdio streams and writing formatted output.

// hUART is a handle to the UART interface

stdioAttach(hUART);

printf("%d bytes sent\n", (int)number);

Library Files

stdio.a

Optional Libraries:

errno.a

Optional File System Drivers:

FAT.a, BOMS.a

Optional Stream Drivers:

UART.a

FIFO.a

SPIMaster.a

SPISlave.a

USBHostFT232.a

Header Files

stdio.h

config.h (optional)

errno.h (optional)

Optional File System Headers:

FAT.h

Optional Stream Headers:

UART.h

FIFO.h

SPIMaster.h

SPISlave.h

USBHostFT232.h

4.3.2.1 fsAttach

Syntax

int fsAttach(VOS_HANDLE h)

Description

Attaches a file system driver to the stdio library. Currently only the FAT file system driver is
supported. The file system is used to perform all operations containing a FILE pointer.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 506

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

h

Handle for FAT file system driver.

Return Value

Always returns zero.

4.3.2.2 stdioAttach

Syntax

int stdioAttach(VOS_HANDLE h)

Description

Attaches an I/O interface handle stdio streams, stdin, stdout and stderr. All three streams are
attached to the same driver.

Cannot be used with a handle to the FAT file system driver or any driver that requires a structure to
be passed in it's read() or write() handlers.

Parameters

h

Handle for stream operations.

Return Value

Always returns zero.

4.3.2.3 stdinAttach

Syntax

int stdinAttach(VOS_HANDLE h)

Description

Attaches an I/O interface handle stdio stream stdin. This stream is an input only.

Cannot be used with a handle to the FAT file system driver or any driver that requires a structure to
be passed in it's read() or write() handlers.

Parameters

h

Handle for stdin input stream.

Return Value

Always returns zero.

4.3.2.4 stdoutAttach

Syntax

int stdoutAttach(VOS_HANDLE h)

Description

Attaches an I/O interface handle stdio stream stdout. This stream is an output only.

Cannot be used with a handle to the FAT file system driver or any driver that requires a structure to
be passed in it's read() or write() handlers.

Parameters

h

Copyright © 2012 Future Technology Devices International Ltd. 507

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Handle for stream output.

Return Value

Always returns zero.

4.3.2.5 stderrAttach

Syntax

int stderrAttach(VOS_HANDLE h)

Description

Attaches an I/O interface handle stdio streams stderr. This stream is an output only.

Cannot be used with a handle to the FAT file system driver or any driver that requires a structure to
be passed in it's read() or write() handlers.

Parameters

h

Handle for stream output.

Return Value

Always returns zero.

4.3.2.6 printf

Syntax

int printf (const char * format, ...)

Description

Print formatted data to stdout. The output is formatted as a sequence of data specified in the format
argument.

After the format parameter, the function expects the correct additional arguments as specified in the
format.

Format Description

%c Character

%i Signed decimal

%d Signed decimal

%o Signed octal

%s Null terminated string

%u Unsigned decimal

%x Unsigned hexadecimal

%X Unsigned hexadecimal

%p Pointer

%r ROM Pointer

Restrictions

There is no support for flags -, +, (space), #, 0

There is no width or precision field support in the printf command.

There is no support for .precision of .number and .*

There is no support for length h, l, L

Copyright © 2012 Future Technology Devices International Ltd. 508

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

format

String that contains the text and formatting to be written to stdout.

Return Value

Number of characters, not including terminating NULL, sent to stream by formatting operation.

Example

// UART is opened with required settings and passed to stdioAttach

// This UART will be used to send print characters

int k = 50;

char m=49;

char *newfile = "hello";

stdioAttach(hUart);

// constant value 100 assumed to be int

printf ("test %d \n", 100);

// variable k is of type int

printf ("test %d \n", k);

// variable k is of type int

printf ("test %c \n", k);

// constant value 'a' is assumed to be int

printf ("test %c\n", 'a');

// variable k is of type char

printf ("test %d \n", k);

// string newfile is a pointer to a char array

printf ("file %s\n", newfile);

// newfile is also a pointer

printf ("newfile at %p\n", newfile);

// &k is a pointer

printf ("k at %p\n", &k);

4.3.2.7 fopen

Syntax

FILE *fopen(const char * filename, const char * mode)

Description

Opens the file whose name is specified in the parameter filename and associates it with a stream
that can be identified in future operations by the FILE object whose pointer is returned.

The operations that are allowed on the stream and how these are performed are defined by the
mode parameter.

Parameters

filename

C string containing the name of the file to be opened. This parameter must follow the file
name specifications of the running environment and can include a path if the system
supports it.

mode

C string containing a file access modes:

"r": File opened for reading only. The file must exist. Initial file pointer will be at the start of
the file.

"w": File opened for writing only. Previous contents of the file are deleted. If the file does
not exist then a new file is created. Initial file pointer will be at the start of the file.

"a": File is opened for appending. If the file does not exist then a new file is created. Initial
file pointer will be at the end of the file.

"r+": File is opened for reading and writing. Writing will occur at the file pointer but will

Copyright © 2012 Future Technology Devices International Ltd. 509

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

truncate the file at this point. Initial file pointer will be at the start of the file.

"w+": File is opened for reading and writing. Previous contents of the file are deleted. Initial
file pointer will be at the start of the file.

"a+": File is opened for reading and writing. Writing will always occur at the end of the file.
Initial file pointer will be at the end of the file.

Return Value

If the file has been successfully opened the function will return a pointer to a FILE object that is used
to identify the stream on all further operations involving it. Otherwise, a null pointer is returned.

4.3.2.8 fread

Syntax

size_t fread(void * ptr, size_t size, size_t count, FILE * stream)

Description

Read block of data from stream

Reads an array of count elements, each one with a size of size bytes, from the stream and stores
them in the block of memory specified by ptr.

The position indicator of the stream is advanced by the total amount of bytes read.

The total amount of bytes read is size * count.

Parameters

ptr

Pointer to a block of memory with a minimum size of (size*count) bytes.

size

Size in bytes of each element to be read.

count

Number of elements, each one with a size of size bytes.

stream

Pointer to a FILE objects that specifies an Input stream.

Return Value

The total number of elements successfully read is returned as a size_t object, which is an integral
data type.

If this number differs from the count parameter, either an error occurred or the End Of File was
reached.

Example

// FAT file system is opened with required settings and passed to fsAttach

// This file system will be used to receive a buffer from a file

char buf[256];

FILE *f;

fsAttach(hFAT);

f = fopen("TEST.TXT", "r");

if (f)

{

fread(buf, 256, 1, f);

fclose(f);

}

4.3.2.9 fwrite

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 510

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

size_t fwrite(const void *ptr, size_t size, size_t count, FILE * stream)

Description

Writes an array of count elements, each one with a size of size bytes, from the block of memory
pointed by ptr to the current position in the stream.

The position indicator of the stream is advanced by the total number of bytes written.

The underlying type of the objects pointed by both the source and destination pointers are
irrelevant for this function (i.e. The result is a binary copy of the data)

The total amount of bytes written is size * count.

Parameters

ptr

Pointer to the array of elements to be written .

size

Size in bytes of each element to be written.

count

Number of elements, each one with a size of size bytes.

stream

Pointer to a FILE object that specifies an Output stream.

Return Value

The total number of elements successfully written is returned as a size_t object, which is an integer
data type.

If this number differs from the count parameter, it indicates an error.

Example

// FAT file system is opened with required settings and passed to fsAttach

// This file system will be used to send an output buffer to a file

char buf[256];

int i;

FILE *f;

fsAttach(hFAT);

for (i=0; i < 256; i++)

{

buf[i] = i & 0xff;

}

f = fopen("TEST.TXT", "r");

if (f)

{

fwrite(buf, 256, 1, f);

fclose(f);

}

4.3.2.10 fclose

Syntax

int fclose(FILE * stream)

Description

Closes the file associated with the stream and disassociates it.

All internal buffers associated with the stream are flushed: the content of any unwritten buffer is
written and the content of any unread buffer is discarded.

Even if the call fails, the stream passed as parameter will no longer be associated with the file.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 511

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

stream

Pointer to a FILE object that specifies the stream to be closed.

Return Value

If the stream is successfully closed, a zero value is returned.

On failure, negative number is returned.

4.3.2.11 fflush

Syntax

int fflush(FILE * stream)

Description

Commits changes in the file associated with the stream.

All internal buffers associated with the stream are flushed: the content of any unwritten buffer is
written and the content of any unread buffer is discarded.

Parameters

stream

Pointer to a FILE object that specifies the stream to be closed.

Return Value

If the stream is successfully flushed, a zero value is returned.

On failure, negative number is returned.

4.3.2.12 feof

Syntax

int feof(FILE * stream)

Description

Check End-of-File indicator.

Checks whether the End-of-File indicator associated with stream is set, returning a value different
from zero if it is.

This indicator is generally set by a previous operation on the stream that reached the End-of-File.

Further operations on the stream once the End-of-File has been reached will fail until either rewind,
fseek or fsetpos is successfully called to set the position indicator to a new value.

Parameters

stream

Pointer to a FILE object that identifies the stream.

Return Value

A non-zero value is returned in the case that the End-of-File indicator associated with the stream is
set.

Otherwise, a zero value is returned.

4.3.2.13 ftell

Syntax

int ftell(FILE *)

Description

Copyright © 2012 Future Technology Devices International Ltd. 512

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Get current position in stream.

For binary streams, the value returned corresponds to the number of bytes from the beginning of
the file.

For text streams, the value is not guaranteed to be the exact number of bytes from the beginning of
the file. but the value returned can still be used to restore the position indicator to this position
using fseek.

Parameters

stream

Pointer to a FILE object that identifies the stream.

Return Value

On success, the current value of the position indicator is returned.

If an error occurs, -1 is returned, and the global variable errno is set to a positive value. This value
can be interpreted by perror.

4.3.2.14 fprintf

Syntax

int fprintf (FILE *stream, const char * format, ...)

Description

Print formatted data to an open file handle. The output is formatted as a sequence of data specified
in the format argument. Refer to the printf topic for details on formatting and restrictions.

Parameters

stream

File handle for a stream output. May be a file or one of the standard streams: stdin, stdout
or stderr.

format

String that contains the text and formatting to be written to stream.

Return Value

Number of characters, not including terminating NULL, sent to stream by formatting operation.

Example

// FAT file system is opened with required settings and passed to fsAttach

// This file system will be used to send print characters

char *newfile = "hello";

FILE *f;

fsAttach(hFAT);

f = fopen("TEST.TXT", "w");

if (f)

{

// constant value 100 assumed to be int

fprintf (f, "test %d \n", 100);

// newfile is a pointer to a null terminated string

fprintf (f, "test %s \n", newfile);

fclose(f);

}

4.3.2.15 stdout

Syntax

FILE *stdout

Copyright © 2012 Future Technology Devices International Ltd. 513

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

Default output stream. This handle is used for the output of printf and is set by the stdioAttach or
stdoutAttach functions. The definition may be used as a handle for output for fwrite but may not
redirect to a file.

Parameters

N/A

Return Value

N/A

4.3.2.16 stdin

Syntax

FILE *stdin

Description

Default input stream. This handle is set by the stdioAttach or stdinAttach functions. The definition
may be used as a handle for input for fread but may not redirect from a file.

Parameters

N/A

Return Value

N/A

4.3.2.17 stderr

Syntax

FILE *stderr

Description

Error output stream. This handle is set by the stdioAttach or stderrAttach functions. The definition
may be used as a handle for output for fwrite but may not redirect to a file.

Parameters

N/A

Return Value

N/A

4.3.2.18 sprintf

Syntax

int sprintf (char *str, const char * format, ...)

Description

Print formatted data to a string. The output is formatted as a sequence of data specified in the
format argument. Refer to the printf topic for details on formatting and restrictions.

Parameters

str

Copyright © 2012 Future Technology Devices International Ltd. 514

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Buffer to receive formatted output characters. Must be large enough to contain all
characters produced by formatting.

format

String that contains the text and formatting to be written to string.

Return Value

Number of characters, not including terminating NULL, placed into string by formatting operation.

Example

char buffer [32]; // large enough for formatted string

int n, a = 5, b = 8;

n = sprintf(buffer, "%d + %d = %d", a, b, a + b);

printf("The sum \"%s\" is %d chars long!\n", buffer, n);

4.3.2.19 remove

Syntax

int remove(const char* file)

Description

Deletes the file specified by the filename in the parameter.

Parameters

file

Name of file to delete. This must not be a path to the file, but may only be a file in the
current working directory.

Return Value

A non-zero value is returned in the case that the file cannot be deleted.

Otherwise, a zero value is returned.

4.3.2.20 rename

Syntax

int rename(const char* oldname, const char* newname)

Description

Renames the file specified by the filename in the first parameter to the name specified in the second
parameter.

Parameters

oldname

Name of file to rename. This must not be a path to the file, but may only be a file in the
current working directory.

newname

Name of file after renaming complete. This must not be a path to the file, the new filename
will exist in the current working directory.

Return Value

A non-zero value is returned in the case that the file cannot be renamed.

Otherwise, a zero value is returned.

Copyright © 2012 Future Technology Devices International Ltd. 515

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

4.3.3 unistd

The UNISTD library defines various constants, types and miscellaneous functions.

Some functions in this library rely on the presence of the stdio library for access to the standard
streams: stdin for input streaming; stdout for output streaming; and stderr which is also an output
stream; and for accesses to files and directories.

Initialisation

If file and directory functions are to be used the fsAttach function for the stdio library must be called.
If standard streams are used then the stdio library stdioAttach function must also be called. See the
"Initialisation" section in the stdio section.

Operation

File and Directory operations.

chdir Changes the current working directory.

Library Hierarchy

UNISTD library hierarchy:

unistd Library

stdio Library

errno Library (Optional) File system (FAT File
System Driver)

Stream (UART, SPI and
FIFO Drivers or Layered

Driver)

VOS Kernel

Requirements

The stdio Library and requirements for

Library Files

unistd.a

Optional Libraries:

stdio.a

errno.a

Optional File System Drivers:

FAT.a, BOMS.a

Optional Stream Drivers:

UART.a

FIFO.a

SPIMaster.a

SPISlave.a

USBHostFT232.a

Header Files

unistd.h

stdio.h

config.h (optional)

Copyright © 2012 Future Technology Devices International Ltd. 516

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

errno.h (optional)

Optional File System Headers:

FAT.h

Optional Stream Headers:

UART.h

FIFO.h

SPIMaster.h

SPISlave.h

USBHostFT232.h

4.3.3.1 chdir

Syntax

int chdir(const char* file)

Description

Changes the current working directory. If a filename is specified

Parameters

file

Name of file to delete. This must not be a path to the file, but may only be a file in the
current working directory.

Return Value

A non-zero value is returned in the case that the file cannot be deleted.

Otherwise, a zero value is returned.

4.3.4 stdlib

The standard ANSI STDIO library functions are of general utility.

abs Get the absolute value of an integer.

strtol Convert a string to a long value in a specified number base.

atol Convert a string to a long value.

atoi Convert a string to an integer

malloc Allocate dynamic memory.

calloc Allocate and clear to zero a block of dynamic memory.

free Free a block of dynamic memory.

Library Hierarchy

STDLIB library hierarchy:

STDLIB Library

errno Library (Optional)

VOS Kernel

Library Files

stdlib.a

Optional Libraries:

Copyright © 2012 Future Technology Devices International Ltd. 517

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

errno.a

Header Files

stdlib.h

config.h (optional)

errno.h (optional)

4.3.4.1 abs

Syntax

int abs(int val);

Description

The abs computes the absolute value of an integer val. If the result cannot be represented, the
behaviour is undefined. The absolute value of the most negative number cannot be represented in
two’s complement.

Parameters

val

Integer value whose absolute value needs to calculated.

Return Value

The abs() function returns the absolute value.

4.3.4.2 strtol

Syntax

long strtol(const char *nptr, char **endptr, int base);

Description

The strtol, function converts the initial portion of the string pointed to by nptr to long. First, it
decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by the isspace function), a subject sequence resembling an integer
represented in some radix determined by the value of base, and a final string of one or more
unrecognized characters, including the terminating null character of the input string. Then, they
attempt to convert the subject sequence to an integer, and return the result.

Parameters

nptr

Points to a character string for strtol() to convert.

endptr

Is a result parameter that, if not NULL

base

Is the base of the string, a value between 0 and 36.

Return Value

Return the converted value, if any. If no conversion could be performed, zero is returned. If the
correct value is outside the range of representable values, ERANGE is stored in errno.

4.3.4.3 atol

Syntax

long atol(const char *nptr);

Copyright © 2012 Future Technology Devices International Ltd. 518

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

The atol function converts the initial portion of the string pointed to by nptr to long, representation

Parameters

nptr

C string containing the representation of an integral number.

Return Value

Functions return the converted value. If no valid conversion could be performed, a zero value is
returned.

4.3.4.4 atoi

Syntax

int atoi(const char *nptr);

Description

The atoi, function converts the initial portion of the string pointed to by nptr to int, representation.

Parameters

nptr

C string containing the representation of an integral number.

Return Value

On success, the function returns the converted integral number as an int value.

If no valid conversion could be performed, a zero value is returned.

4.3.4.5 malloc

Syntax

void *malloc (size_t size);

Description

The malloc function allocates space for an object whose size is specified by size and whose value is
indeterminate.

Parameters

size

Size of the memory block, in bytes.

Return Value

A pointer to the memory block allocated by the function. If the function failed to allocate the
requested block of memory, a NULL pointer is returned.

4.3.4.6 calloc

Syntax

void *calloc(size_t nmemb, size_t size);

Description

The calloc function allocates space for an array of nmemb objects, each of whose size is size. The
space is initialized to all bits zero.

Copyright © 2012 Future Technology Devices International Ltd. 519

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

nmemb

Number of elements to be allocated.

size

Size of elements.

Return Value

A pointer to the memory block allocated by the function. If the function failed to allocate the
requested block of memory, a NULL pointer is returned.

4.3.4.7 free

Syntax

void free(void *ptr);

Description

The free function causes the space pointed to by ptr to be deallocated that is, made available for
further allocation. If ptr is a null pointer, no action occurs. otherwise, if the argument does not
match a pointer earlier returned by the calloc, malloc, or, or if the space has been deallocated by a
call to free or realloc, the behaviour is undefined

Parameters

ptr

Pointer to a memory block previously allocated with malloc or calloc to be deallocated.

Return Value

The free function returns no value.

4.3.5 string

The standard ANSI String library functions are useful for manipulating strings and RAM memory.

memcpy Copy a block of memory.

memset Set a block of memory to a value.

strcmp Compare one string with another.

strncmp Compare a set number of characters in one string to another string.

strcpy Copy one string to another.

strncpy Copy a set number of characters from one string to another.

strcat Concatenate one string onto another.

strlen Obtain the length of a string.

Library Hierarchy

String library hierarchy:

String Library

errno Library (Optional)

VOS Kernel

Library Files

string.a

Optional Libraries:

Copyright © 2012 Future Technology Devices International Ltd. 520

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

errno.a

Header Files

stdlib.h

config.h (optional)

errno.h (optional)

4.3.5.1 memcpy

Syntax

void * memcpy (void * destination, const void * source, size_t num);

Description

This function is used to copy a block of memory. It copies num of bytes from the location pointed by
source to the memory block pointed by destination

The underlying type of the objects pointed by both the source and destination pointers are
irrelevant for this function (i.e. The result is a binary copy of the data).

The function does not check for any terminating null character in source - it always copies exactly
num bytes.

To avoid overflows, the size of the arrays pointed by both the destination and source parameters
shall be at least num bytes, and should not overlap.

Parameters

destination

Pointer to the destination array where the content is to be copied, type-cast to a pointer of
type void*.

source

Pointer to the source of data to be copied, type-cast to a pointer of type void*.

num

Number of bytes to copy.

Return Value

Destination pointer where the source content is copied to is returned.

4.3.5.2 memset

Syntax

void * memset (void * ptr, int value, size_t num);

Description

Fill block of memory with given value.

Sets the first num bytes of the block of memory pointed by ptr to the specified value (interpreted as
an unsigned char).

Parameters

ptr

Pointer to the block of memory to fill.

value

Value to be set. The value is passed as an int, but the function fills the block of memory
using the unsigned char conversion of this value.

num

Number of bytes to be set to the value.

Copyright © 2012 Future Technology Devices International Ltd. 521

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Return Value

Pointer where block of memory is filled with given value is returned.

4.3.5.3 strcmp

Syntax

int strcmp (const char * str1, const char * str2);

Description

Compares the C string str1 to the C string str2.

This function starts comparing the first character of each string. If they are equal to each other, it
continues with the following pairs until the characters differ or until a terminating null-character is
reached.

Parameters

str1

String 1 to be compared.

str2

String 2 to be compared.

Return Value

Returns an integral value indicating the relationship between the strings:

Zero indicates that both strings are equal.

A value greater than zero indicates that the first character that does not match has a greater value
in str1 than in str2;

A value less than zero indicates the opposite.

4.3.5.4 strncmp

Syntax

int strncmp (const char * str1, const char * str2, size_t num);

Description

Compares up to num characters of the C string str1 to those of the C string str2.

This function starts comparing the first character of each string. If they are equal to each other, it
continues with the following pairs until the characters differ, until a terminating null-character is
reached, or until num characters match in both strings, whichever happens first.

Parameters

str1

String 1 to be compared.

str2

String 2 to be compared.

num

Maximum number of characters to compare.

Return Value

Returns an integral value indicating the relationship between the strings:

Zero indicates that both strings are equal.

A value greater than zero indicates that the first character that does not match has a greater value
in str1 than in str2;

Copyright © 2012 Future Technology Devices International Ltd. 522

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

A value less than zero indicates the opposite.

4.3.5.5 strcpy

Syntax

char * strcpy (char * destination, const char * source);

Description

Copies the C string pointed by source into the array pointed by destination, including the terminating
null character.

To avoid overflows, the size of the array pointed by destination shall be long enough to contain the
same C string as source (including the terminating null character), and should not overlap in memory
with source.

Parameters

destination

Pointer to the destination array where the content is to be copied.

source

C string to be copied.

Return Value

Destination pointer where the source string is copied is returned.

4.3.5.6 strncpy

Syntax

char * strncpy (char * destination, const char * source, size_t num);

Description

Copies the first num characters of source to destination.

If the end of the source C string (which is signaled by a null-character) is found before num
characters have been copied, destination is padded with zeros until a total of num characters have
been written to it.

No null-character is implicitly appended to the end of destination, so destination will only be null-
terminated if the length of the C string in source is less than num.

Parameters

destination

Pointer to the destination array where the content is to be copied.

source

C string to be copied.

num

Maximum number of characters to be copied from source.

Return Value

Destination pointer where two string are copied is returned.

4.3.5.7 strcat

Syntax

char * strcat (char * destination, const char * source);

Description

This function is used to concatenate strings

Copyright © 2012 Future Technology Devices International Ltd. 523

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Appends a copy of the source string to the destination string.

The terminating null character in destination is overwritten by the first character of source, and a
new null-character is appended at the end of the new string formed by the concatenation of both in
destination.

Parameters

destination

Pointer to the destination array, which should contain a C string, and be large enough to
contain the concatenated resulting string.

source

C string to be appended. This should not overlap destination.

Return Value

Destination pointer where both the string are concatenated is returned.

4.3.5.8 strlen

Syntax

size_t strlen (const char * str);

Description

This function is used to get the length of the str. A C string is as long as the amount of characters
between the beginning of the string and the terminating null character.

Parameters

str

C string.

Return Value

The length of str.

4.3.6 errno

The standard ANSI errno library functions are useful for retrieving error codes.

errno Get last error number.

Library Hierarchy

Errno library hierarchy:

errno Library

VOS Kernel

Library Files

errno.a

Header Files

errno.h

4.3.6.1 errno

Syntax

int errno

Copyright © 2012 Future Technology Devices International Ltd. 524

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description

errno is a macro that returns the last error number generated by a library operation.

Parameters

Return Value

The errno macro returns the last error number generated.

Copyright © 2012 Future Technology Devices International Ltd. 525

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

5 Sample Firmware Applications

5.1 Sample Firmware Overview

A selection of firmware samples are included in the Vinculum II Toolchain. These are designed to
demonstrate the capabilities of the Kernel, Drivers and Libraries.

General Samples show small applications which demonstrate a feature of the Kernel, Drivers or
Libraries. They are simple, minimal applications that typically perform one small function.

USB Host Samples feature the USB Host Controller hardware to demonstrate the use of either the
USBHost driver or drivers layered on the USBHost driver.

USB Slave Samples show the use of the USBSlave driver and it's associated layered drivers.

Firmware Samples are complete applications which may be adapted. These are mainly versions of
the VNC1L firmware.

The samples are intended as a guide to writing firmware for the VNC2 and is provided as illustration
only. As such it cannot be guaranteed to function correctly under all circumstances nor will support
for the code be provided.

5.2 General Samples

The following samples are available in the samples General folder. The table below shows the
features demonstrated in each sample.

Kernel Drivers Libraries

Template Sample Threads, IOMux UART, GPIO N/A

GPIOKitt Sample Threads, IOMux, Delay GPIO N/A

PWMBreathe Sample Threads, IOMux PWM N/A

Philosophers Sample Threads, IOMux,
Semaphores, Mutexes

GPIO N/A

Runtime Sample Threads, IOMux UART stdio

HelloWorld Sample Threads, IOMux, Delay GPIO, FAT, BOMS,
USBHost

stdio, string

5.2.1 Template Sample

Template sample hierarchy:

Template Application

UART Driver GPIO Driver

VOS Kernel

Description

This sample is a simple project which writes a counter to the UART interface and flashes the LEDs on
a V2EVAL board. It is designed to have as few dependencies on drivers and libraries but still provide
meaningful output to indicate activity.

Function

The output to the UART is sent at 9600 baud, 8 bits, 1 stop bit, no parity with CTS/RTS flow control
enabled. The output is as follows:

Hello 00000

Hello 00001

Hello 00002

Hello 00003

Hello 00004

...

Copyright © 2012 Future Technology Devices International Ltd. 526

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

The GPIO Driver interface is used to output and illuminate the LEDs. The 4 LEDs on the V2EVAL board
are flashed in sequence as by an 8 bit counter - a 'zero' in the bit position on the GPIO port will light
the LED. The mapping of the counter to the LEDs on the board is dictated by the package type of the
VNC2.

32 pin - LED3 bit 1, LED4 bit 2.
48 pin - LED3 bit 1, LED4 bit 2, LED5 bit 5, LED6 bit 4.
64 pin - LED3 bit 1, LED4 bit 2, LED5 bit 5, LED6 bit 6.

Comments

The LEDs will stop flashing if the UART interface is blocked on flow control.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_read()

vos_dev_write()

vos_dev_ioctl()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

uart_init()

VOS_IOCTL_COMMON_ENABLE_DMA

VOS_IOCTL_UART_SET_BAUD_RATE

VOS_IOCTL_UART_SET_FLOW_CONTROL

VOS_IOCTL_UART_SET_DATA_BITS

VOS_IOCTL_UART_SET_STOP_BITS

VOS_IOCTL_UART_SET_PARITY

UART Read and Write Operations

Library Functions

N/A

5.2.2 GPIOKitt Sample

GPIOKitt sample hierarchy:

GPIO Kitt Application

GPIO Driver

VOS Kernel

Description

The GPIOKitt sample is an LED pattern flashing demonstration which maps up-to 4 GPIO pins to the
LEDs on a V2EVAL board.

Copyright © 2012 Future Technology Devices International Ltd. 527

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Function

The GPIO Driver interface is used to output and illuminate the LEDs. The 4 LEDs on the V2EVAL board
are flashed in sequence by a bit oscillating within an 8 bit register - a 'zero' in the bit position on the
GPIO port will light the LED. The mapping of the counter to the LEDs on the board is dictated by the
package type of the VNC2.

32 pin - LED3 bit 1, LED4 bit 2.
48 pin - LED3 bit 1, LED4 bit 2, LED5 bit 5, LED6 bit 4.
64 pin - LED3 bit 1, LED4 bit 2, LED5 bit 5, LED6 bit 6.

Comments

The 4 LEDs on the V2EVAL board should flash in sync off and on, with a constant period. For 48 and
64 pin packages there should be three LEDs lit at all times.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread_ex()

vos_start_scheduler()

vos_dev_open()

vos_dev_write()

vos_dev_ioctl()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

Library Functions

N/A

5.2.3 PWMBreathe Sample

PWMBreathe sample hierarchy:

PWMBreathe Application

PWM Driver

VOS Kernel

Description

The PWMBreathe sample shows the use of the PWM outputs on the VNC2.

Function

The PWM Driver interface is used to illuminate the LEDs. The 4 LEDs on the V2EVAL board are driven
with a varying duty cycle by the PWM output. This causes them to 'breathe' between fully-on and
fully-off with a period of around 6 seconds.

The mapping of the PWM outputs to the LEDs on the board is dictated by the package type of the
VNC2.

32 pin - LED3 to PWM 5 1, LED4 to PWM 6.
48 pin - LED3 to PWM 6, LED4 to PWM5, LED5 to PWM5, LED6 to PWM6.
64 pin - LED3 to PWM 6, LED4 to PWM5, LED5 to PWM5, LED6 to PWM6.

Copyright © 2012 Future Technology Devices International Ltd. 528

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Comments

The 4 LEDs on the V2EVAL board will 'breathe'. LED4 and LED6 are paired and will show the same
brightness, LED3 and LED5 will be similarly paired in brightness but out of sync with the other pair of
LEDs.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_iocell_set_config()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_ioctl()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

pwm_init()

VOS_IOCTL_PWM_SET_PRESCALER_VALUE

VOS_IOCTL_PWM_SET_COUNTER_VALUE

VOS_IOCTL_PWM_SET_COMPARATOR_VALUE

VOS_IOCTL_PWM_SET_OUTPUT_TOGGLE_ENABLES

VOS_IOCTL_PWM_SET_INITIAL_STATE

VOS_IOCTL_PWM_SET_NUMBER_OF_CYCLES

VOS_IOCTL_PWM_ENABLE_INTERRUPT

VOS_IOCTL_PWM_ENABLE_OUTPUT

VOS_IOCTL_PWM_WAIT_ON_COMPLETE

VOS_IOCTL_PWM_DISABLE_OUTPUT

Library Functions

N/A

5.2.4 Philosophers Sample

Philosophers sample hierarchy:

Philosophers Application

GPIO Driver

VOS Kernel

Description

The purpose of this sample is to show how semaphores and mutexes may be employed to
synchronise multiple threads and prevent deadlock while allocating resources.

Function

Copyright © 2012 Future Technology Devices International Ltd. 529

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

This is an implementation of the classic synchronisation problem in operating system theory http://
en.wikipedia.org/wiki/Dining_philosophers_problem. Five independent threads are started which
each have access to 2 semaphores from a total of 5 semaphores available. The threads signal and
wait on these semaphores. An LEDs is lit if a thread holds less than 2 semaphores and off if it holds
2 semaphores.

Control over the setting of the LED status variable "gpioData", a resource shared between multiple
threads, is achieved using the leds_lock mutex. This will prevent more than one update of the
variable's value at any one time. Effectively stopping another thread from reading from or writing to
the variable while it is being modified by another thread.

Comments

There are 5 threads which flash LEDs, however, there are only 4 LEDs on the V2EVAL board.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread_ex()

vos_start_scheduler()

vos_dev_open()

vos_dev_write()

vos_dev_ioctl()

vos_init_semaphore()

vos_wait_semaphore()

vos_signal_semaphore()

vos_init_mutex()

vos_lock_mutex()

vos_unlock_mutex()

vos_delay_msecs()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

Library Functions

N/A

5.2.5 Runtime Sample

Runtime sample hierarchy:

Runtime Application

stdio

UART, SPI and FIFO
Drivers

VOS Kernel

Description

Demonstrates the use of the stdio library. Using printf and fwrite to send output to the UART. The

http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem

Copyright © 2012 Future Technology Devices International Ltd. 530

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

use of the stdout stream is also demonstrated.

Function

The output to the UART will be as follows:

No format

Decimal signed -46

Decimal unsigned 4294967250

Decimal signed -48 unsigned 4294967249

Hex caps FEED lower face

Character A

String here and here!

Pointers 1345 13a2 197

Escape d-quote " s-quote ' tab ^I bslash \

--HELLO--

Month 1 is January

Month 2 is February

Month 3 is March

Month 4 is April

Month 5 is May

Month 6 is June

Month 7 is July

Month 8 is August

Month 9 is September

Month 10 is October

Month 11 is November

Month 12 is December

Comments

Variable argument lists sent to the printf command.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_ioctl()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

uart_init()

VOS_IOCTL_COMMON_ENABLE_DMA

VOS_IOCTL_UART_SET_BAUD_RATE

VOS_IOCTL_UART_SET_FLOW_CONTROL

VOS_IOCTL_UART_SET_DATA_BITS

VOS_IOCTL_UART_SET_STOP_BITS

VOS_IOCTL_UART_SET_PARITY

Library Functions

Copyright © 2012 Future Technology Devices International Ltd. 531

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

stdioAttach

printf

fwrite

fprintf

5.2.6 HelloWorld Sample

HelloWorld sample hierarchy:

HelloWorld Application

string stdio GPIO Driver

FAT File System

BOMS Class Driver

USB Host Driver

VOS Kernel

Description

Demonstrates the use of the stdio library. sing fopen, fwrite and fclose to append to a file. The string
library is also called to obtain the length of a string with strlen.

Function

A flash disk with a FAT file system is connected to USB port 2. It is detected and attached to the
BOMS driver and FAT File System driver. This is then attached to the stdio library using fsAttach.

The phrase "Hello World! \n" will be appended to the file TEST.TXT on the disk.

Comments

The file is opened in append mode. LEDs are used to signal progress through the code.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_close()

vos_dev_ioctl()

vos_delay_msecs()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

usbhost_init()

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS

boms_init()

BOMS MSI_IOCTL_BOMS_ATTACH

Copyright © 2012 Future Technology Devices International Ltd. 532

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

BOMS MSI_IOCTL_BOMS_DETACH

fatdrv_init()

FAT_IOCTL_FS_ATTACH

FAT_IOCTL_FS_DETACH

Library Functions

fsAttach

fopen

fwrite

fclose

strlen

5.2.7 RTC Sample

RTCExample sample hierarchy:

RTCExample Application

RTC (PCF2123) Driver

SPI Master GPIO Driver

VOS Kernel

Description

This sample demonstrates communicating with an NXP PCF2123 Real Time Clock using the SPI
Master and GPIO interfaces. Please refer to the RTC Driver section within the help file for a detailed
description of each of the available I/O Control calls.

Function

The sample uses the Ethernet/MP3/RTC shield developed by FTDI. The example communicates with
the RTC and demonstrates writing/ reading the time and starting a countdown timer.

Comments

I/O Control calls to start the countdown timer or alarm block until the alarm/timer elapses or is
canceled from another thread. The GPIO interface is used to monitor for interrupts and unblocks the
alarm/timer semaphore when an interrupt occurs.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_set_idle_thread_tcb_size()

vos_get_package_type()

vos_create_thread_ex()

vos_start_scheduler()

vos_dev_open()

vos_dev_close()

vos_dev_ioctl()

vos_delay_msecs()

vos_enable_interrupts()

Driver Functions

Copyright © 2012 Future Technology Devices International Ltd. 533

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

spimaster_init()

VOS_IOCTL_SPI_MASTER_SS_0

rtc_init()

RTC_IOCTL_RESET

RTC_IOCTL_ATTACH

RTC_IOCTL_DETACH

RTC_IOCTL_SET_TIME

RTC_IOCTL_GET_TIME

RTC_IOCTL_START_COUNTDOWN

Library Functions

N/A

5.3 USB Host Samples

The following samples are available in the samples USBHost folder. The table below shows the
features demonstrated in each sample.

Kernel Drivers Libraries

StillImageApp Sample Threads StillImage, FAT, BOMS,
USBHost, GPIO

N/A

USBHostGeneric Sample Threads, Delay, Drivers USBHost N/A

USBHostGPSLogger
Sample

Threads, Delay USBHost, FT232USBHost,
FAT, BOMS

N/A

USBHostHID Sample Threads, Delay,
Semaphores, Mutexes

USBHost (Interrupt
Endpoints), UART

string

USBHostHID2 Sample Threads, Delay, Multiple
Semaphores

USBHost (Interrupt
Endpoints, Non-blocking
reads), UART

string

USBMic Sample Threads, Delay USBHost (Isochronous
Endpoints, Finding Next
Endpoint)

string

5.3.1 StillImageApp Sample

StillImageApp sample hierarchy:

StillImageApp Application

GPIO Driver FAT File System Still Image Class Driver

BOMS Class Driver

USB Host Driver

VOS Kernel

Description

The Still Image App will communicate with a Still Image Class Camera (supporting PIMA command
set). If it supports the InitiateCapture method then it can take a picture on the camera and then
download it to a file on a flash disk.

Function

Copyright © 2012 Future Technology Devices International Ltd. 534

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

A flash disk with a FAT file system is connected to USB port 2. A suitable digital camera to USB port 1.
The firmware will initialise both ports and attach the file system to the flash disk. It will then attach
to the digital camera and send an InitiateCapture command. The process of taking a picture can take
several seconds depending on the model of camera. It will then transfer the image taken to a file on
the flash disk.

LEDs are used to indicate progress while taking pictures or transferring them from the camera to the
disk. A delay of approximately 5 seconds is added after a picture is taken and written to the disk.
The sample will disconnect from both the camera and the disk.

Comments

The sample has been tested with the Canon Powershot Canon SX 110 IS.

If desired, the macro TAKE_PICTURE may be removed to alter the functionality of the sample. If it is
not defined then the sample will copy the first object on the devices storage to the disk and delete
the object rather than taking a picture - this mode is intended to be used if the camera does not
support the InitiateCapture command.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_close()

vos_dev_write()

vos_dev_ioctl()

vos_delay_msecs()

Driver Functions

gpio_init()

VOS_IOCTL_GPIO_SET_MASK

usbhost_init()

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS

stillimage_init()

STILLIMAGE_IOCTL_ATTACH

STILLIMAGE_IOCTL_GET_FIRST_OBJECT

STILLIMAGE_IOCTL_INITIATE_CAPTURE

STILLIMAGE_IOCTL_GET_OBJECT_INFO

STILLIMAGE_IOCTL_OPEN_OBJECT

STILLIMAGE_IOCTL_CLOSE_OBJECT

STILLIMAGE_IOCTL_DELETE_OBJECT

boms_init()

BOMS MSI_IOCTL_BOMS_ATTACH

BOMS MSI_IOCTL_BOMS_DETACH

fat_init()

fat_open()

Copyright © 2012 Future Technology Devices International Ltd. 535

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

fat_close()

fat_fileOpen()

fat_fileClose()

fat_fileWrite()

Library Functions

N/A

5.3.2 USBHostGeneric Sample

USBHostGeneric sample hierarchy:

USBHostGeneric Application

USBHostGeneric Driver UART Driver string

USB Host Driver

VOS Kernel

Description

The USBHostGeneric sample demonstrates creating and using a layered driver on top of the
USBHost.

Function

There are two parts to USBHostGeneric sample.

The first is the layered driver, this is attached to a device on the USBHost Driver which can then be
opened using vos_dev_open(). Read and write operations can be sent through vos_dev_read() and
vos_dev_write() to the driver from an application.

The second is the application which opens the USBHostGeneric driver and receives data from it. This
data is sent to the UART interface.

Comments

The driver can be layered on top of any other driver to either provide abstraction or additional
functionality to an interface. It is possible to have the driver not layered where it may provide some
processing function if that is required.

The UART interface relies on the default settings of the UART driver of 9600 baud, 8 bits, 1 stop bit,
no parity.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_close()

vos_dev_write()

vos_dev_read()

vos_dev_ioctl()

Driver Functions

uart_init()

Copyright © 2012 Future Technology Devices International Ltd. 536

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_COMMON_ENABLE_DMA

UART Read and Write Operations

usbhost_init()

USB Host General Transfer Block

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE

Library Functions

strlen

5.3.3 USBHostGPSLogger Sample

USBHostGPSLogger sample hierarchy:

USBHostGPSLogger Application

FT232 USB Host Device
Driver

FAT File System string

BOMS Class Driver

USB Host Driver

VOS Kernel

Description

The USBHostGPSLogger sample demonstrates reading data from an FT232-style device on the USB
Host controller and writing it to a flash disk.

Function

The application finds a flash disk on USB port 2 using the
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS method in the USBHost Driver. It will then
attach that to a BOMS Class Driver and the FAT File System API.

An FT232 (or equivalent) device is found on USB port 1 using
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID. This is attached to the FT232 USB Host
Device Driver. The baud rate on the FT232 is set to 4800 baud in line with the standard output of
GPS units.

A file called "LOG.TXT" is opened and the data from the FT232 will be appended to the file.

Comments

A Rayming TripNav TN-200 GPS was tested with this sample. It utilises an FT232 device to convert
the serial output of the GPS to USB. The USBHostFT232 driver was used to interface with the
FT232device. The FT232 device on the GPS unit runs at 4800 baud, 8 bits, 1 stop bit, no parity.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_close()

Copyright © 2012 Future Technology Devices International Ltd. 537

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_dev_write()

vos_dev_read()

vos_dev_ioctl()

Driver Functions

usbhost_init()

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID

usbHostFt232_init()

VOS_IOCTL_USBHOSTFT232_ATTACH

VOS_IOCTL_UART_SET_BAUD_RATE

boms_init()

BOMS MSI_IOCTL_BOMS_ATTACH

BOMS MSI_IOCTL_BOMS_DETACH

fat_init()

fat_open()

fat_close()

fat_fileOpen()

fat_fileClose()

fat_fileWrite()

Library Functions

N/A

5.3.4 USBHostHID Sample

USBHostHID sample hierarchy:

USBHostHID Application

USB Host Driver UART Driver string

VOS Kernel

Description

The USBHostHID sample demonstrates reading from an interrupt endpoint.

Function

The USBHost driver is connected to USB port 1. A search is made for a HID device by searching using
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID. Once the HID device is found then it will
poll that device and send any data received to the UART interface. The interrupt endpoint on the
device is used.

Comments

The sample is pre-programmed to find a Logitech Wingman Action Pad P/N 863188-0000. This has a
USB VID of 0x046d and a PID of 0xc20b. Changing the following lines to use other devices:

// find VID/PID of Logitech Wingman Action device

hc_ioctVidPid.vid = 0x046d;

hc_ioctVidPid.pid = 0xc20b;

The device will always send a 5 byte status packet when a status change on the buttons or joypad

Copyright © 2012 Future Technology Devices International Ltd. 538

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

are detected.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_init_semaphore()

vos_wait_semaphore()

vos_dev_open()

vos_dev_close()

vos_dev_write()

vos_dev_read()

vos_dev_ioctl()

Driver Functions

uart_init()

VOS_IOCTL_COMMON_ENABLE_DMA

UART Read and Write Operations

usbhost_init()

USB Host General Transfer Block

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER

Library Functions

strlen

5.3.5 USBHostHID2 Sample

USBHostHID2 sample hierarchy:

USBHostHID2 Application

USB Host Driver UART Driver string

VOS Kernel

Description

The USBHostHID2 sample demonstrates reading from 2 interrupt endpoints simultaneously.

Function

The USBHost driver is connected to both USB ports. The first device on each USB port it used. The
interrupt endpoint on each device is found. If it does not have an interrupt endpoint then an error is
reported.

When both devices are initialised, both interrupt endpoints are read with the non-blocking flag set.
This results in the vos_dev_read() call not blocking on a response from the devices. The

Copyright © 2012 Future Technology Devices International Ltd. 539

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_wait_semaphore_ex() is used to wait on multiple semaphores, i.e. a read from either device to
complete.

Sample output from the sample code is as follows:

Starting...

Enumeration complete Port 01

Init complete Port 01

Enumeration complete Port 00

Init complete Port 00

Port 01 Data: 0000000000000000

Port 01 Data: 0000000000000000

Port 01 Data: 0000260000000000

Port 01 Data: 0000000000000000

Comments

The sample should work with most HID devices but has only been tested with a selection of
keyboards and barcode scanners.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_init_semaphore()

vos_wait_semaphore_ex()

vos_dev_open()

vos_dev_close()

vos_dev_write()

vos_dev_read()

vos_dev_ioctl()

Driver Functions

uart_init()

VOS_IOCTL_COMMON_ENABLE_DMA

UART Read and Write Operations

usbhost_init()

USB Host General Transfer Block

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER

Library Functions

strlen

memset

Copyright © 2012 Future Technology Devices International Ltd. 540

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

5.3.6 USBMic Sample

USBMic sample hierarchy:

USBMic Application

USB Host Driver UART Driver string

VOS Kernel

Description

The USBMic sample demonstrates reading from an isochronous endpoint.

Function

The USBHost driver is connected to both USB ports. A search is made on USB port 1 for an Audio
Streaming device. This is done with VOS_IOCTL_USBHOST_DEVICE_GET_COUNT,
VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE and
VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO rather than
VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS. If the interface does not have an
isochronous endpoint then it is ignored.

The VOS_IOCTL_USBHOST_SET_INTERFACE command is sent to the interface chosen and a SETUP
packet to start sampling is sent with VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER. The endpoint
number for this SETUP packet is obtained from VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO.

An isochronous transfer is performed using vos_dev_read() with 4 frames of data per read. The
frame number to start the read is obtained by VOS_IOCTL_USBHOST_HW_GET_FRAME_NUMBER and
the start frame set to the following frame. Data from the receive buffer is then sent to the UART
interface.

Comments

The sample has been tested with a Prosound USB Microphone. It should also work with some
webcams and internet telephone handsets or headsets.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_create_thread()

vos_start_scheduler()

vos_init_semaphore()

vos_dev_open()

vos_dev_close()

vos_dev_write()

vos_dev_read()

vos_dev_ioctl()

Driver Functions

uart_init()

VOS_IOCTL_COMMON_ENABLE_DMA

UART Read and Write Operations

usbhost_init()

USB Host Isochronous Transfer Block

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

Copyright © 2012 Future Technology Devices International Ltd. 541

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_IOCTL_USBHOST_DEVICE_GET_COUNT

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_SET_INTERFACE

VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO.

 VOS_IOCTL_USBHOST_HW_GET_FRAME_NUMBER

VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER

Library Functions

strlen

memset

5.4 USB Slave Samples

The following samples are available in the samples USBSlave folder. The table below shows the
features demonstrated in each sample.

Kernel Drivers Libraries

USBSlaveFT232App
Sample

Threads USBSlave N/A

5.4.1 USBSlaveFT232App Sample

USBSlaveFT232App sample hierarchy:

USBSlaveFT232App
Application

FT232 USB Slave Device

USB Slave Driver

VOS Kernel

Description

Demonstrates the use of the FT232 driver for the USB Slave.

Function

The VNC2 will enumerate as an FT232BM Device with a description of "VNC2 USB Serial". It will echo
back any data received at the IN endpoint to the OUT endpoint.

Comments

Descriptors cannot be changed.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

Copyright © 2012 Future Technology Devices International Ltd. 542

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_dev_read()

vos_dev_write()

vos_dev_ioctl()

Driver Functions

VOS_IOCTL_USBSLAVEFT232_ATTACH

VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS

Library Functions

N/A

5.5 Firmware Samples

The following samples are available in the samples USBSlave folder. The table below shows the
features demonstrated in each sample.

Kernel Drivers Libraries

V2DAP Firmware Threads, Delay,
Semaphores

USBHost, FAT, BOMS,
FIFO, UART, SPISlave,
GPIO

string

V2DPS Firmware Threads, Delay,
Semaphores

USBHost, FAT, BOMS,
UART, GPIO, USBSlave

string

5.5.1 VNC1L Firmware

Sample firmware for emulating the VNC1L command monitor and different firmware builds is provided
as source code. The code can be modified to suit applications where VNC1L was used and improve
on the supplied firmware.

Please note that the source code for the VNC1L firmware is not available and VNC1L firmware cannot
be used on VNC2.

5.5.1.1 V2DAP Firmware

V2DAP application hierarchy:

V2DAP Application

USB Host Driver FAT File System UART, SPI and
FIFO Drivers

GPIO Driver string

BOMS Class Driver

USB Host Driver

VOS Kernel

Description

Provides code to emulate a VNC1L device running the VDAP firmware version. A command monitor is
used to send commands to the firmware and receive responses.

Function

Please refer to the "Vinculum Firmware User Manual" which can be obtained from http://www.
vinculum.com/ in the section for Documents.

Comments

Not all features and functions of the VNC1L can be replicated.

Kernel Functions

vos_init()

http://www.vinculum.com/
http://www.vinculum.com/

Copyright © 2012 Future Technology Devices International Ltd. 543

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_write()

vos_dev_ioctl()

Driver Functions

usbhost_init()

USB Host General Transfer Block

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE

usbHostFt232_init()

VOS_IOCTL_USBHOSTFT232_ATTACH

VOS_IOCTL_UART_SET_BAUD_RATE

boms_init()

BOMS MSI_IOCTL_BOMS_ATTACH

BOMS MSI_IOCTL_BOMS_DETACH

fat_init()

fat_open()

fat_close()

fat_fileOpen()

fat_fileClose()

fat_fileWrite()

Library Functions

memset

5.5.1.2 V2DPS Firmware

V2DAP application hierarchy:

V2DAP Application

FT232 USB Slave
Device

FAT File System UART Drivers GPIO Driver string

BOMS Class Driver

USB Slave Driver USB Host Driver

VOS Kernel

Description

Provides code to emulate a VNC1L device running the VDPS firmware version. A command monitor is
used to send commands to the firmware and receive responses.

Copyright © 2012 Future Technology Devices International Ltd. 544

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Function

Please refer to the "Vinculum Firmware User Manual" which can be obtained from http://www.
vinculum.com/ in the section for Documents.

Comments

Not all features and functions of the VNC1L can be replicated.

Kernel Functions

vos_init()

vos_set_clock_frequency()

vos_get_package_type()

vos_iomux_define_input() and vos_iomux_define_output()

vos_create_thread()

vos_start_scheduler()

vos_dev_open()

vos_dev_write()

vos_dev_ioctl()

Driver Functions

usbhost_init()

USB Host General Transfer Block

VOS_IOCTL_USBHOST_GET_CONNECT_STATE

VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE

VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE

usbHostFt232_init()

VOS_IOCTL_USBHOSTFT232_ATTACH

VOS_IOCTL_UART_SET_BAUD_RATE

boms_init()

BOMS MSI_IOCTL_BOMS_ATTACH

BOMS MSI_IOCTL_BOMS_DETACH

fat_init()

fat_open()

fat_close()

fat_fileOpen()

fat_fileClose()

fat_fileWrite()

Library Functions

memset

http://www.vinculum.com/
http://www.vinculum.com/

Copyright © 2012 Future Technology Devices International Ltd. 545

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6 Vinco Libraries

The use of the Vinculum-II firmware/drivers revolves around a Real-time Operating System (RTOS).
While this approach provides a lot of advantages for systems that are time-critical, it may take time
to learn and use the provided utilities effectively. The Arduino APIs, on the other hand, hide most
system details from users so that they can learn to use the board in an intuitive way. As a result, the
number of people using the Arduino platform is increasing day by day. With that in mind, the Vinco
libraries are designed with the same interface as Arduino APIs to provide an easier way for
students, hobbyists... to use the Vinco, and to provide Arduino users with a friendly alternative
platform for their needs.

This section is intended to help first time users of Vinco. It also can serve a purpose as a reference
document on porting and developing application from scratch on FTDI's rapid prototyping Vinco
module. Throughout this document ample examples are provided to familiarize the user with how to
use Vinco Software libraries for rapid application development. Please refer to individual sections of
libraries on how to build an application using library specific APIs.

6.1 Before using the Vinco libraries

This section introduce users to the data types used in Vinco libraries, the Vinco Application Wizard
and the format of a Vinco sketch.

6.1.1 Data types in Vinco libraries

In some circumstances, there is a need to know the size of the data being used. The following table
presents the data types supported by the Vinculum II compiler and their corresponding sizes:

Data Type Size in Bits

(unsigned) char 8

(unsigned) short 16

(unsigned) int 32

(unsigned) long 32

void 0

port 8

Note: There is no support for floating point types.

To generate optimum code the char data type should be used as much as possible. Long and int
should only ever be used when 32-bit values are required.

For a better indication of variable size in the code, the following data types have been internally
defined. Users will not need to perform any action to use these data types.

Data Type Corresponding Type Size in Bits

uint8 / int8 unsigned char / char 8

uint16 / int16 unsigned short / short 16

Copyright © 2012 Future Technology Devices International Ltd. 546

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

uint32 unsigned int / unsigned
long

32

int32 int / long 32

6.1.2 Vinco Application Wizard

The Vinco Application Wizard provides a convenient way to specify which Vinco libraries will be
included in a project. To create a new project using the Wizard, select New in the Project group under
the File tab, then select Vinco Wizard Project.

Under the New Project tab, specify the project name, the project directory and the solution name. A
new directory will be created for the project if the checkbox Create Directory for Project is checked.
Then click Next >.

Under the Drivers tab, various Vinco libraries are listed. To select a library, simply check the box next
to the library’s name. If a library uses some hardware driver, the driver will be displayed when the

Copyright © 2012 Future Technology Devices International Ltd. 547

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

library is selected. After all necessary libraries have been selected, click Next >.

Under the Kernel tab, some of the parameters need to be specified for the operation of the Vinculum
II RTOS. Their default values should be used. Click Next > to view the summary report or Finish to
complete the creation of the new project.

Copyright © 2012 Future Technology Devices International Ltd. 548

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

In order to add or remove some libraries during development, select Modify in the Project group under the File
tab.

The Application Wizard will open and libraries can be added to or removed from the project. The existing
application code will not be affected.

6.1.3 main.c and vinco.h

These files are created by the Application Wizard. They handle all the differences between Vinculum
II software framework and Arduino software framework and should not be modified. These files can
be found in the project folder.

6.1.4 Vinco sketch format

Similar to the Arduino sketch, a Vinco sketch needs two essential functions: setup() and loop(). In
addition, due to the difference in the software structure between the Arduino and the Vinco, another
function needs to be added for Vinco sketches: setupInterrupts(). The details are as follows:

setup()

The setup() function is called when a sketch starts. It is used to initialize variables, pin modes, start
using libraries, etc. The setup function will only run once, after each power-up or reset of the Vinco

Copyright © 2012 Future Technology Devices International Ltd. 549

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

board.

loop()

After creating a setup() function, which initializes and sets the initial values, the loop() function loops
consecutively, allowing the program to change and respond. It is used to actively control the Vinco
board.

setupInterrupts()

This function is used to attach user-defined interrupt service routines to the interrupt pins. All
attachInterrupts() calls need to be placed in this function. This is the main difference between an
Arduino sketch and a Vinco sketch. Minor changes (if any) applied to each library will be presented in
the section for that library accordingly.

6.2 Digital I/O Library

A digital pin on Vinco can be specified either by its number (0, 1, 2 …) or its name on the board (J3_1,
J3_2 …). The figure below shows the numbers and names of all digital I/O pins.

Vinco Digital I/O Pins

Note: pinMode(), digitalRead() and digitalWrite() should not be used with J4_7 (GND) and J4_8 (AREF).

Copyright © 2012 Future Technology Devices International Ltd. 550

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.2.1 pinMode()

Syntax

int8 pinMode(uint8 pin, uint8 mode)

Description
Configures the specified pin to behave either as an input or an output.

Parameters
pin: pin number / name

mode: INPUT or OUTPUT

Returns
One of the following status codes: INVALID_PIN / INVALID_MODE / SUCCESSFUL

Usage

pinMode(pin, mode);

Example
pinMode(0, OUTPUT); /* set pin 0 as OUTPUT */

pinMode(J4_6, INPUT); /* set pin J4-6, i.e. pin 13, as INPUT */

6.2.2 digitalWrite()

Syntax

int8 digitalWrite(uint8 pin, uint8 value)

Description
Writes HIGH (3.3V) or LOW (0V) to the specified pin.

Parameters
pin: pin number / name

value: HIGH or LOW

Returns
One of the following status codes: INVALID_PIN / INVALID_VALUE / SUCCESSFUL

Usage

digitalWrite(pin, value);

Example
digitalWrite(0, HIGH); /* write HIGH to pin 0 */

digitalWrite(J4_3, LOW); /* write LOW to pin J4-3 */

6.2.3 digitalRead()

Syntax

uint8 digitalRead(uint8 pin)

Description
Reads the value of the specified pin.

Copyright © 2012 Future Technology Devices International Ltd. 551

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters
pin: pin number / name

Returns
One of the following status codes: INVALID_PIN / INVALID_VALUE / SUCCESSFUL

Usage

digitalRead(pin);

Example
digitalRead(0); /* read pin 0 */

6.2.4 Port Access APIs

The Port Access APIs provide convenient access to multiple pins with a single command. There are 4
defined ports on the Vinco board:

Pins from J3-1 to J3-8 are grouped to port J3.

Pins from J4-1 to J4-8 are grouped to port J4.

Note: The Port Access APIs have no effect on J4-8 (AREF) and J4-7 (GND).

Pins from J5-1 to J5-8 are grouped to port J5.

Pins from J6-1 to J6-8 are grouped to port J6.

6.2.4.1 portMode()

Syntax

int8 portMode(uint8 port, uint8 mode)

Description
Sets the specified port as INPUT or OUTPUT.

Parameters
port: port name (J3, J4, J5, J6)

mode: INPUT or OUTPUT

Returns
One of the following status codes: INVALID_PORT / INVALID_MODE / SUCCESSFUL

Usage

portMode(port, mode);

Example
portMode(J3, INPUT); /* set the whole port J3 as INPUT */

6.2.4.2 portWrite()

Syntax

int8 portWrite(uint8 port, uint8 value)

Description
Writes a value to the port specified.

Parameters
port: port name (J3, J4, J5, J6)

Copyright © 2012 Future Technology Devices International Ltd. 552

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

value: an 8-bit value corresponding to 8 pins of the port. The leftmost bit of value specifies
the value to be written to pin 1 and the rightmost bit of value specifies the value to be
written to pin 8 of the port.

Note: For port J4, the two rightmost bits of value will be ignored since they are corresponding to
J4_7 (GND) and J4_8 (AREF).

Returns
One of the following status codes: INVALID_PORT / SUCCESSFUL

Usage

portWrite(port, value);

Example
portWrite(J3, 0xFF); /* write 1 to every pin of port J3 */

portWrite(J4, 0xF0); /* write 0 to J4-5, J4-6 and 1 to J4-1, J4-2, J4-3, J4-4 */

6.2.4.3 portRead()

Syntax

uint8 portRead(uint8 port)

Description
Reads the port specified.

Parameters
port: port name (J3, J4, J5, J6)

Returns
An 8-bit value corresponding to 8 pins of the port. The leftmost bit is the value read from pin
1. The next leftmost bit is the value read from pin 2, and so on. The rightmost bit is the value
read from pin 8 of the port.

Note: For port J4, the two leftmost bits are always 0.

Usage

portRead(port);

Example
portRead(J3); /* read port J3 */

6.2.5 Using on-board LEDs

The Vinco board provides 2 on-board LEDs for simple debugging. They are located near the two USB
connectors (LED1 and LED2 in the figure above). These LEDs are active low, meaning they will turn
on when the pins that control them are LOW and turn off when the pins that control them are HIGH.

The function digitalWrite() is designed to work with these two LEDs. By using LED1 and LED2 as the
pin name, users can turn on the LEDs by calling

digitalWrite(LED1, LOW);

digitalWrite(LED2, LOW);

and turn off the LEDs by calling

digitalWrite(LED1, HIGH);

digitalWrite(LED2, HIGH);

Note: The two LED pins have to be set to OUTPUT (by calling pinMode() function) before being used.

Copyright © 2012 Future Technology Devices International Ltd. 553

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.3 Time Library

6.3.1 millis()

Syntax

uint32 millis(void)

Description
Returns the number of milliseconds since starting an application.

Note: This function overflows (turns back to zero) after approximately 49.72 days.

Parameters
None

Returns
Number of milliseconds since the program started

Usage

millis();

Example
unsigned long timePassed = millis();

6.3.2 micros()

Syntax

uint32 micros(void)

Description
Returns the number of microseconds since starting an application.

Note: This function overflows (turns back to zero) after approximately 1.19 hours.

Parameters
None

Returns
Number of microseconds since the program started

Usage

micros();

Example
unsigned long timePassed = micros();

6.3.3 delay()

Syntax

void delay(uint16 ms)

Description
Pauses the program for the amount of time (in milliseconds) specified as parameter.

Copyright © 2012 Future Technology Devices International Ltd. 554

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters
ms: the number of milliseconds to pause

Returns
None

Usage

delay(ms);

Example
delay(1000); /* pause the program for 1 second */

6.3.4 delayMicroseconds48Mhz()

Syntax

void delayMicroseconds48Mhz(uint32 us)

Description
Pauses the program for the amount of time (in microseconds) specified when the CPU speed

is 48Mhz

Parameters
us: the number of microseconds to pause

Returns
None

Usage

delayMicroseconds48Mhz(us);

Example
delayMicroseconds48Mhz(1000); /* pause the program for 1 millisecond */

6.3.5 delayMicroseconds24Mhz()

Syntax

void delayMicroseconds24Mhz(uint32 us)

Description
Pauses the program for the amount of time (in microseconds) specified when the CPU speed

is 24Mhz

Parameters
us: the number of microseconds to pause

Returns
None

Usage

delayMicroseconds24Mhz(us);

Example

Copyright © 2012 Future Technology Devices International Ltd. 555

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

delayMicroseconds24Mhz(1000); /* pause the program for 1 millisecond */

6.3.6 delayMicroseconds12Mhz()

Syntax

void delayMicroseconds12Mhz(uint32 us)

Description
Pauses the program for the amount of time (in microseconds) specified when the CPU speed

is 12Mhz

Parameters
us: the number of microseconds to pause

Returns
None

Usage

delayMicroseconds12Mhz(us);

Example
delayMicroseconds12Mhz(1000); /* pause the program for 1 millisecond */

6.4 Serial Library

6.4.1 begin()

Syntax

void begin(long speed)

Description
Initializes the serial port on Vinco. The UART is configured for no flow control, 8 data bits, 1

stop bit and no parity.

Parameters
speed: baud rate for serial communication

Returns
None

Usage

Serial.begin(speed);

Example
Serial.begin(9600);

6.4.2 end()

Syntax

void end(void)

Copyright © 2012 Future Technology Devices International Ltd. 556

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description
Closes the serial port on Vinco.

Parameters
None

Returns
None

Usage

Serial.end();

Example
Serial.end();

6.4.3 available()

Syntax

int available(void)

Description
Returns the number of bytes read into internal buffer that may be read.

Parameters
None

Returns
Number of bytes in the internal buffer

Usage

Serial.available();

Example
int bytesAvailable = Serial.available();

6.4.4 read()

Syntax

int read(void)

Description
Returns a single byte from the internal buffer.

Parameters
None

Returns
Returns a single byte from the internal buffer if data are available in the internal buffer or -1
if no data is available

Usage

Serial.read();

Copyright © 2012 Future Technology Devices International Ltd. 557

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example
char byte = (char) Serial.read();

6.4.5 write()

Syntax

void write(char *buf, int len)

Description
Transmits binary data through the serial port.

Parameters
buf: pointer to the buffer containing the data

len: length of the data in the buffer that is to be transmitted

Returns
None

Usage

Serial.write(buf, len);

Example
char someData[] = {0xAB, 0xBA, 0xAB, 0xBA, 0xDE, 0xAD, 0xBE, 0xEF};

Serial.write(someData, 8);

6.4.6 flush()

Syntax

void flush(void)

Description
Flushes the incoming serial data buffer.

Parameters
None

Returns
None

Usage

Serial.flush();

Example
Serial.flush();

6.4.7 print()

Syntax

void print(int val, eFormat_t format)

Description

Copyright © 2012 Future Technology Devices International Ltd. 558

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Prints data to the serial port as human-readable ASCII text.

Parameters
val: the value that is to be printed

format: format in which the data is to be printed. The enumerated data type eFormat_t
takes the following values:

BYTE // e.g. Serial.print(78, BYTE) gives "N"

BIN // e.g. Serial.print(78, BIN) gives "1001110"

OCT // e.g. Serial.print(78, OCT) gives "116”

DEC // e.g. Serial.print(78, DEC) gives "78"

HEX // e.g. Serial.print(78, HEX) gives "4E"

Returns
None

Usage

Serial.print(val, format);

Example
Serial.print(66, DEC);

6.4.8 println()

Syntax

void println(int val, eFormat_t format)

Description
Prints data to the serial port as human-readable ASCII text followed by a new line character.

Parameters
val: the value that is to be printed

format: format in which the data is to be printed. The enumerated data type eFormat_t
takes the following values:

BYTE // e.g. Serial.print(78, BYTE) gives "N"

BIN // e.g. Serial.print(78, BIN) gives "1001110"

OCT // e.g. Serial.print(78, OCT) gives "116”

DEC // e.g. Serial.print(78, DEC) gives "78"

HEX // e.g. Serial.print(78, HEX) gives "4E"

Returns
None

Usage

Serial.print(val, format);

Example
Serial.print(66, DEC);

6.4.9 printstr()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 559

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

void printstr(char *string)

Description
Prints a string to the serial port.

Parameters
string: pointer to null terminated char array

Returns
None

Usage

Serial.printstr(string);

Example
Serial.printstr(“Hello World\n\r”);

6.4.10 Notes on using the Serial library

6.4.10.1 Porting Guide

The serial communication APIs described above are designed to make porting from existing Arduino
applications over to the Vinco platform easy. However, the serial communications API for Arduino and
Vinco have a few differences and the following points need to be considered when porting an
Arduino application:

The function Serial.begin() must be called from the setup() function).

All the APIs except for Serial.begin() must be called from the loop() function (or other functions that
are called directly or indirectly from the loop() function).

Unlike in Arduino’s serial communication library, the function Serial.print() always takes two
parameters. The first parameter is a value and the second parameter is the format in which the
value should be printed.

Printing of string is not supported in Serial.print(), instead a new function is provided, which is
Serial.printstr which takes only one parameter i.e. a string pointer.

Printing floating point number is not supported.

Function Serial.peek() is not supported.

6.4.10.2 Getting the setup ready

It is fairly simple to get the setup ready. The lines 0 and 1 on connector J3 correspond to Rx and Tx,
and line 14 in connector J4 may be used as signal ground. The Tx and Rx from Vinco should be
connected to the serial port of the PC in “null modem” configuration (i.e. Tx of Vinco connected to Rx
of PC’s serial port and Rx of Vinco connected to Tx of PC’s serial port). Once that is done a terminal
emulator like HyperTerminal, Putty or TeraTerm may be configured with the following settings to get
the serial port of the PC to talk to the serial port of Vinco:

Baud rate 9600

Data bits 8

Parity None

Stop bit(s) 1

Flow control None

Copyright © 2012 Future Technology Devices International Ltd. 560

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Note: Since the voltage level used in commercial PC’s serial ports (6V-15V) is different from the voltage level
used in the Vinco serial port (3.3V), care should be taken when cables are used to connect the Vinco’s serial
port to a PC. Either a USB-RS232 cable should be used or a driver IC is needed to raise the voltage level of
the Vinco’s serial port to that of the PC serial port.

Hardware setup for serial communications

6.5 Interrupts Library

There are 4 interrupts available for the user. Each interrupt is mapped to a fixed pin. The previous
attached Interrupt Service Routine (ISR) will be replaced with the new one if ever the user will
configure the same interrupt number.

The user has the option to enable or disable the interrupts. Interrupts are enabled by default, so in
the setup() function, there is no need to call interrupts() unless noInterrupts() is called beforehand.

The ISR is competing for time with the main program. Ideally it should be as short a routine as
possible. It is used for notification, manipulating counter values or state of variables, etc. It’s not a
good idea to have a while or for loop statement or even delay() inside the ISR function.

6.5.1 interrupts()

Syntax

void interrupts(void)

Description
Re-enables interrupts after being disabled by noInterrupts().

Parameters
None

Returns
None

Copyright © 2012 Future Technology Devices International Ltd. 561

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Usage

interrupts();

Example
interrutps();

6.5.2 noInterrupts()

Syntax

void noInterrupts(void)

Description
Disables the interrupts.

Parameters
None

Returns
None

Usage

noInterrupts();

Example
noInterrutps();

6.5.3 attachInterrupt()

Syntax

int attachInterrupt(uint8 intNum, fncptr isr, uint8 mode)

Description
Allows a specified function to be invoked once an external interrupt occurs.

Parameters
intNum: Interrupt number which is 0, 1, 2, or 3. The interrupt pins are fixed.

0 – pin 4

1 – pin 5

2 – pin 2

3 – pin 3

isr: Function to be invoked when an interrupt occurs. The function should return void and
have no parameters, i.e. void isr(void)

mode: Defines the trigger on when the interrupt will occur. The following are the possible
values:

LOW – triggers the interrupt whenever the pin is low

CHANGE – triggers the interrupt whenever the pin changes value

RISING – triggers the interrupt when the pin changes from low to high

FALLING – triggers the interrupt when the pin changes from high to low

Returns
One of the status codes: INVALID_INT_NUM / INVALID_MODE / SUCCESSFUL

Usage

attachInterrupt(intNum, isr, mode);

Copyright © 2012 Future Technology Devices International Ltd. 562

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Note: This function has to be called from setupInterrupts() function.

Example
void isr_1(void)

{

 // do something

}

void setupInterrupts()

{

 attachinterrupt(0, isr_1, RISING);

}

6.5.4 detachInterrupt()

Syntax

int detachInterrupt(uint8 intNum)

Description
Removes the interrupt routine attached to a specified interrupt pin.

Parameters
intNum: Interrupt number which is 0-3.

Returns
One of the status codes: INVALID_PIN / SUCCESSFUL

Usage

detachInterrupt(intNum);

Example
detachInterrupt(0);

6.6 Analog Library

6.6.1 analogRead()

Syntax

uint16 analogRead(uint8 pin)

Description
Reads the value from the specified analog pin.

Parameters
pin: pin number to read from (either A0, A1, A2, A3, A4, A5, A6 or A7) .

Returns
An integer value between 0 to 1023

Usage

analogRead(pin);

Example
analogRead(A0); /* read pin A0 */

6.6.2 analogWrite()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 563

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

analogWrite(uint8 pin, uint8 value)

Description
Writes an analog value (PWM wave) to a pin.

Parameters
pin: pin number to write to.

Note: The Arduino supports PWM output on digital pins 3, 5, 6, 9, 10, 11. Although it is possible
to use any digital pins or analog pins for PWM output on the Vinco board (up to 8 pins), only
digital pins 4, 5, 6, 9, 10, 11, 12, 13 are currently supported to make the Vinco board compatible
with current Arduino shields.

value: an integer value between 0 and 255

Returns
None

Usage

analogWrite(pin, value);

Example
analogWrite(9, 127); /* PWM signal with 50% duty cycle on pin 9 */

6.6.3 Notes on usage of the Analog I/O library

6.6.3.1 Reference voltage

The reference voltage of the analog-to-digital converter (ADC) MCP3008 is determined by the
voltage coming into the AREF pin (J4-8). The on-board jumper JP2 can provide a reference voltage of
3.3V or 5V. Any other reference voltage between 2.7V and 5V can be applied to AREF if needed.

6.6.3.2 ADC converter resolution

The MCP3008 is an 8-channel, 10-bit ADC. For a reference voltage of 5V, input voltages between 0
and 5V will be mapped to integer values between 0 and 1023. This yields a resolution of 5V / 1024
units or 4.9 mV per unit. By changing the reference voltage (coming into AREF), the resolution will be
changed accordingly.

6.6.3.3 PWM output

PWM signal can be used to vary the brightness of a LED or drive a motor at various speeds. After a
call to analogWrite(), the pin will generate a steady square wave of the specified duty cycle until the
next call to analogWrite() on the same pin. The frequency of the PWM signal is 250 kHz.

There is no need to call pinMode() to set the pin as output before using analogWrite().

6.7 Ethernet Library

This library allows a Vinco board to connect to the internet via a Vinco Ethernet shield. The library is
composed of three components, namely:

Server: This component contains APIs that make the Vinco board act as a TCP server
accepting incoming connections.

Client: This component contains APIs that make the Vinco act as a TCP client that makes
outgoing connections.

UDP: This component allows the Vinco to communicate using the UDP protocol.

6.7.1 Ethernet core functions

6.7.1.1 beginMacIp()

Syntax

void beginMacIp(uint8 *mac, uint8 *ip)

Copyright © 2012 Future Technology Devices International Ltd. 564

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description
Initializes the Ethernet chip (W5100) on the Ethernet shield given the MAC address and IP

address. The subnet mask is set to 255.255.255.0 while the gateway is set to the value of
the IP address with the last octet set to 1.

Parameters
mac: The MAC address to be assigned to the Ethernet chip which is an array of 6 bytes.

ip: The IP address to be assigned to the Ethernet chip which is an array of 4 bytes.

Returns
None

Usage

Ethernet.beginMacIp(mac, ip);

Example
uint8 mac_addr[] = { 0x90,0xA2,0xDA,0x00,0x14,0xBA };

uint8 ip_addr[] = { 192,168,0,150 };

Ethernet.beginMacIp(mac_addr, ip_addr);

6.7.1.2 beginMacIpGw()

Syntax

void beginMacIpGw(uint8 *mac, uint8 *ip, uint8 *gateway)

Description
Initializes the Ethernet chip (W5100) on the Ethernet shield given the MAC address, IP

address and Gateway. The subnet mask is set to 255.255.255.0.

Parameters
mac: The MAC address to be assigned to the Ethernet chip which is an array of 6 bytes.

ip: The IP address to be assigned to the Ethernet chip which is an array of 4 bytes.

gateway: The Gateway to be assigned to the Ethernet chip which is an array of 4 bytes.

Returns
None

Usage

Ethernet.beginMacIpGw(mac, ip, gateway);

Example
uint8 mac_addr[] = { 0x90,0xA2,0xDA,0x00,0x14,0xBA };

uint8 ip_addr[] = { 192,168,0,150 };

uint8 gtw_addr[] = { 192,168,0,1 };

Ethernet.beginMacIpGw(mac_addr, ip_addr, gtw_addr);

6.7.1.3 beginMacIpGwSn()

Syntax

void beginMacIpGwSn(uint8 *mac, uint8 *ip, uint8 *gateway, uint8 *subnet)

Description
Initializes the Ethernet chip (W5100) on the Ethernet shield given the MAC address, IP

address, Gateway end Subnet Mask.

Parameters
mac: The MAC address to be assigned to the Ethernet chip which is an array of 6 bytes.

Copyright © 2012 Future Technology Devices International Ltd. 565

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

ip: The IP address to be assigned to the Ethernet chip which is an array of 4 bytes.

gateway: The Gateway to be assigned to the Ethernet chip which is an array of 4 bytes.

subnet: The Subnet Mask to be assigned to the Ethernet chip which is an array of 4 bytes.

Returns
None

Usage

Ethernet.beginMacIpGwSn(mac, ip, gateway, subnet);

Example
uint8 mac_addr[] = { 0x90,0xA2,0xDA,0x00,0x14,0xBA };

uint8 ip_addr[] = { 192,168,0,150 };

uint8 gtw_addr[] = { 192,168,0,1 };

uint8 subnet_mask [] = { 255,255,255,0 };

Ethernet.beginMacIpGw(mac_addr, ip_addr, gtw_addr, subnet_mask);

6.7.2 Server functions

6.7.2.1 begin()

Syntax

void begin(uint16 sPort)

Description
Create a socket for the server and listen for incoming connections.

Parameters
sPort: The server’s port to listen to

Returns
None

Usage

Server.begin(sPort);

Example
Server.begin(80); /* listen to port 80 for incoming connection */

6.7.2.2 available()

Syntax

uint8 available(uint16 sPort, clientInfo *ret)

Description
Gets a client which is connected to the server and has data available for reading.

Parameters
sPort: The server’s port to check for

ret: The connected client

Returns
TRUE if there is a client which is connected to the server and has data available for reading.

FALSE otherwise.

Usage

Server.available(sPort, ret);

Copyright © 2012 Future Technology Devices International Ltd. 566

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example
clientInfo client1;

if (Server.available(80, &client1))

{

// Read incoming data from client1

}

6.7.2.3 writeBuf()

Syntax

void writeBuf(const uint8 *buf, uint32 size, uint16 sPort)

Description
Writes data to all connected clients.

Parameters
b: The data to write

size: Size (in bytes) of the data to write

sPort: The server’s port to write to

Returns
None

Usage

Server.writeBuf(data, size, sPort);

Example
const uint8 data[] = { ‘H’, ’e’, ’l’, ’l’, ’o’ };

Server.writeBuf(data, 5, 80);

6.7.2.4 writeStr()

Syntax

void writeStr(const char *str, uint16 sPort)

Description
Writes a string to all connected clients.

Parameters
str: The string to write

sPort: The server’s port to write to

Returns
None

Usage

Server.writeStr(str, sPort);

Example
Server.writeStr(“Hello World!\n\r”, 80);

6.7.2.5 writeByte()

Syntax

void writeByte(uint8 b, uint16 sPort)

Description

Copyright © 2012 Future Technology Devices International Ltd. 567

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Writes a byte to all connected clients.

Parameters
b: The value to write

sPort: The server’s port to write to

Returns
None

Usage

Server.writeByte(b, sPort);

Example
Server.writeByte(‘H’, 80);

6.7.3 Client functions

6.7.3.1 clientIp()

Syntax

int8 clientIp(clientInfo *info, uint8 *ip, uint16 sPort)

Description
Creates a client which can connect to the specified IP address and port.

Parameters
info: Client information. This structure represents the created client in other function calls.

ip: The server’s IP address to connect to

sPort: The server’s port to connect to

Returns
Upon success, the function will return ETHERNET_LIB_SUCCESS. It will return
ETHERNET_LIB_FAILURE otherwise.

Usage

Client.clientIp(info, ip, sPort);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

Client.clientIp(client1, server_ip, server_port);

6.7.3.2 connect()

Syntax

int8 connect(clientInfo *info)

Description
Connects to the server based on the IP address and port in the client information.

Parameters
info: Client information, which is initialized by clientIp().

Returns
Upon success, the function will return ETHERNET_LIB_SUCCESS. It will return

Copyright © 2012 Future Technology Devices International Ltd. 568

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

ETHERNET_LIB_FAILURE otherwise.

Usage

Client.connect(info);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

6.7.3.3 connected()

Syntax

int8 connected(clientInfo *info)

Description
Checks whether the client is connected or not. Note that a client is considered connected if

the connection has been closed but there is still unread data.

Parameters
info: Client information, which is initialized by clientIp().

Returns
Upon success, the function will return ETHERNET_LIB_SUCCESS. It will return
ETHERNET_LIB_FAILURE otherwise.

Usage

Client.connected(info);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

// Send data to server

}

6.7.3.4 writeBuf()

Syntax

void writeBuf(clientInfo *info, const uint8* data, uint32 len)

Description
Writes data to the server to which the client is connected.

Parameters
info: Client information, which is initialized by clientIp()

data: The data to be sent

len: The size of the data to be sent

Returns
None

Usage

Copyright © 2012 Future Technology Devices International Ltd. 569

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Client.writeBuf(info, data, len);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

uint8 data[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ };

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

Client.writeBuf(client1, data, 5);

}

6.7.3.5 writeStr()

Syntax

void writeStr(clientInfo *info, const char* data)

Description
Writes a string to the server to which the client is connected.

Parameters
info: Client information, which is initialized by clientIp()

data: The string to be sent

Returns
None

Usage

Client.writeStr(info, data);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

Client.writeStr(client1, “Hello World!\n\r”);

}

6.7.3.6 writeByte()

Syntax

void writeByte(clientInfo *info, uint8 data)

Description
Writes a byte to the server to which the client is connected.

Parameters
info: Client information, which is initialized by clientIp()

data: The byte to be sent

Returns
None

Copyright © 2012 Future Technology Devices International Ltd. 570

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Usage

Client.writeByte(info, data);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

Client.writeByte(client1, ‘H’);

}

6.7.3.7 available()

Syntax

uint8 available(clientInfo *info)

Description
Returns the number of bytes available for reading

Parameters
info: Client information, which is initialized by clientIp()

Returns
The number of bytes available

Usage

Client.available(info);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

uint8 bytes_rcvd;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

bytes_rcvd = Client.available(client1);

}

6.7.3.8 read()

Syntax

int8 read(clientInfo *info)

Description
Read the next byte received from the server

Parameters
info: Client information, which is initialized by clientIp()

Returns
The byte received from the server

Usage

Copyright © 2012 Future Technology Devices International Ltd. 571

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Client.read(info);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

uint8 bytes_rcvd;

int bytes_read;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

bytes_rcvd = Client.available(client1);

for (bytes_read = 0; bytes_read < bytes_rcvd; bytes_read++)

{

Client.read(client1);

}

}

6.7.3.9 flush()

Syntax

void flush(clientInfo *info)

Description
Discards any unread byte that have been written to the client

Parameters
info: Client information, which is initialized by clientIp()

Returns
None

Usage

Client.flush(info);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

uint8 bytes_rcvd;

int bytes_read;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

bytes_rcvd = Client.available(client1);

for (bytes_read = 0; bytes_read < bytes_rcvd; bytes_read++)

{

Client.read(client1);

}

Client.flush(client1); // discard unread bytes, if any

}

6.7.3.10 stop()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 572

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

void stop(clientInfo *info)

Description
Disconnect the client from the server

Parameters
info: Client information, which is initialized by clientIp()

Returns
None

Usage

Client.stop(info);

Example
clientInfo client1;

uint8 server_ip[] = { 192,168,0,170 };

uint8 server_port = 80;

uint8 bytes_rcvd;

int bytes_read;

Client.clientIp(client1, server_ip, server_port);

Client.connect(client1);

if (Client.connected(client1))

{

bytes_rcvd = Client.available(client1);

for (bytes_read = 0; bytes_read < bytes_rcvd; bytes_read++)

{

Client.read(client1);

}

Client.flush(client1); // discard unread bytes, if any

}

Client.stop(client1);

6.7.4 Udp functions

6.7.4.1 begin()

Syntax

void begin(uint16 sPort);

Description
Starts listening on the specified port.

Parameters
sPort: Port where to listen

Returns
None

Usage

Udp.begin(sPort);

Example
Udp.begin(1357);

6.7.4.2 send()

Syntax

void send(uint8 * buf, uint16 len, uint8 *ip, uint16 sPort) ;

Copyright © 2012 Future Technology Devices International Ltd. 573

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description
Sends packets of data to the specified the IP address and port.

Parameters
buf: Data to be transmitted

len: Length of the buffer

ip: IP address where to send the packet

sPort: Port where to send the packet

Returns
None

Usage

Udp.send(buf, len, ip, sPort);

Example
uint8 peer_ip[] = { 192,168,0,171 };

uint16 peer_port = 2468;

uint8 data[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’ };

Udp.send(data, 6, peer_ip, peer_port);

6.7.4.3 sendString()

Syntax

void sendString(const char *str, uint8 *ip, uint16 sPort);

Description
Sends a string of text to the specified IP address and port.

Parameters
str: The string to be transmitted

ip: IP address where to send the packet

sPort: Port where to send the packet

Returns
None

Usage

Udp.sendstring(str, ip, sPort);

Example
uint8 peer_ip[] = { 192,168,0,171 };

uint16 peer_port = 2468;

Udp.send(“Hello World!\r\n”, peer_ip, peer_port);

6.7.4.4 read()

Syntax

uint32 read(uint8* buf, uint16 len, uint8 *ip, uint16 *sPort);

Description
Reads incoming data.

Parameters
buf: The buffer to store incoming data

len: The number of bytes that the user wants to read

Copyright © 2012 Future Technology Devices International Ltd. 574

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

ip: The peer’s IP address

sPort: The peer’s port

Returns
The number of bytes that are actually read. It may be less than len.

Usage

Udp.read(buf, len, ip, sPort);

Example
uint8 peer_ip[] = { 192,168,0,171 };

uint16 peer_port = 2468;

uint8 buffer[192];

uint32 number_of_bytes_read;

number_of_bytes_read = Udp.read(buffer, 64, peer_ip, peer_port);

6.7.4.5 available()

Syntax

uint32 available(void);

Description
Checks the number of bytes available for reading.

Parameters
None

Returns
The number of bytes that are available for reading

Usage

Udp.available();

Example
uint8 peer_ip[] = { 192,168,0,171 };

uint16 peer_port = 2468;

uint32 number_of_bytes_available;

number_of_bytes_available = Udp.available();

6.7.5 Porting guide from Arduino Ethernet library

6.7.5.1 TCP client

In the Arduino Ethernet Library, each client is an instance of the class Client. Information such as
peer’s ip address, peer’s port is stored in each client separately. Since the Vinculum II compiler does
not support object-oriented programming languages, a C structure is defined to simulate an Arduino
client object.

typedef struct

{

uint16 srcPort;

uint8 sockId;

uint8 *ip;

uint16 sPort;

} clientInfo;

Each instance of the above structure is considered as a client “object” in the Vinco Ethernet Library.
Each newly created client first needs to be initialized with clientIp(). The client can then be passed as
an argument to all Client APIs. The API that is called will act specifically on the client passed as its
parameter.

Copyright © 2012 Future Technology Devices International Ltd. 575

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.7.5.2 TCP server

In the Arduino Ethernet Library, each server is an instance of the class Server. The information about
the port being opened for that server will be stored inside the object itself. Since the Vinculum II
compiler does not support object-oriented programming languages, the port number is instead
passed as a parameter to every Server API. The API that is called will act specifically on the port
passed as its parameter.

6.8 MP3 Library

6.8.1 begin()

Syntax

void begin(void)

Description
Initialize the MP3 decoder.

Parameters
None

Returns
None

Usage

begin();

Example
MP3.begin();

6.8.2 setVolume()

Syntax

void setVolume(uint8 leftVolume, uint8 rightVolume);

Description
Set the left and right volume.

Parameters

leftVolume: left volume. Maximum volume is 0x00 and total silence is 0xFE.

rightVolume: right volume. Maximum volume is 0x00 and total silence is 0xFE.

Returns
None

Usage

MP3.setVolume(leftVolume, rightVolume);

Example
MP3.setVolume(0x15, 0x15);

6.8.3 setBass()

Syntax

void setBass(uint8 amplitude, uint8 freqLimit);

Copyright © 2012 Future Technology Devices International Ltd. 576

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description
Set the bass level.

Parameters

amplitude: bass enhancement in 1 dB steps (0..15, 0 = off)

freqLimit: lower limit frequency in 10 Hz steps (2..15)

Returns
None

Usage

MP3.setBass(amplitude, freqLimit);

Example
MP3.setBass(5, 6);

6.8.4 setTreble()

Syntax

void setTreble(uint8 amplitude, uint8 freqLimit);

Description
Set the treble level.

Parameters

amplitude: treble control in 1.5 dB steps (-8..7, 0 = off)

freqLimit: lower limit frequency in 1 kHz steps (1..15)

Returns
None

Usage

MP3.setTreble(amplitude, freqLimit);

Example
MP3.setTreble(5, 6);

6.8.5 send()

Syntax

uint16 send(uint8 *buffer, uint16 numBytesToWrite);

Description
Send data to the MP3 decoder

Parameters
buffer: pointer to the array containing the data to be sent

numBytesToWrite: number of bytes to write

Returns
Number of bytes actually written

Usage

MP3.send(buffer, numBytesToWrite);

Copyright © 2012 Future Technology Devices International Ltd. 577

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Example
unsigned char data[6] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05};

MP3.send(data, 6);

6.8.6 sent()

Syntax

void sent(void);

Description
Inform the library that the sending process has completed

Parameters
None

Returns
None

Usage

MP3.sent();

Example
MP3.sent();

6.8.7 cancel()

Syntax

void cancel(void);

Description
Informs the library that the sending process has been canceled.

Parameters
None

Returns
None

Usage

MP3.cancel();

Example
MP3.cancel();

6.8.8 softReset()

Syntax

void softReset(void);

Description
Perform a soft reset

Parameters
None

Returns
None

Copyright © 2012 Future Technology Devices International Ltd. 578

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Usage

MP3.softReset();

Example
MP3.softReset();

6.8.9 hardReset()

Syntax

void hardReset(void);

Description
Perform a hard reset

Parameters
None

Returns
None

Usage

MP3.hardReset();

Example
MP3.hardReset();

6.9 USB Host Printer Library

6.9.1 open()

Syntax

VN_STATUS open(VN_HANDLE* vnHandle);

Description
Open a handle to the USB Host Printer driver

Parameters

vnHandle: an un-initialized handle

Returns
One of the status messages:

VINCO_USBHOSTPRINTER_OK

VINCO_USBHOSTPRINTER_UNSUCCESSFUL

Usage

USBHostPrinter.open(vnHandle);

Example
VN_HANDLE handle;

USBHostPrinter.open(&handle);

6.9.2 getCapability()

Syntax

VN_STATUS getCapability(VN_HANDLE vnHandle, unsigned char *devCaps);

Description

Copyright © 2012 Future Technology Devices International Ltd. 579

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Gets the IEEE 1284 device ID string. This describes the printer and its capabilities.

Parameters

vnHandle: the handle initialized by open()

devCaps: A pointer to an unsigned char that will contain the device ID string

Returns
One of the status messages:

VINCO_USBHOSTPRINTER_OK

VINCO_USBHOSTPRINTER_UNSUCCESSFUL

Usage

USBHostPrinter.getCapability(vnHandle, *devCaps);

Example
VN_HANDLE handle;

unsigned char devCaps;

USBHostPrinter.getCapability(handle, &devCaps);

6.9.3 getPortStatus()

Syntax

VN_STATUS getPortStatus(VN_HANDLE vnHandle, unsigned char *bufStatus);

Description
Gets the current printer status. The printer status is a bit mask value with status bits defined

in USBPrinter.h.

Parameters

vnHandle: the handle initialized by open()

bufStatus: A pointer to an 8-bit value. This will be a bitmap of the current printer status.

Returns
One of the status messages:

VINCO_USBHOSTPRINTER_OK

VINCO_USBHOSTPRINTER_UNSUCCESSFUL

Usage

USBHostPrinter.getPortStatus(vnHandle, *bufStatus);

Example
VN_HANDLE handle;

unsigned char bufStatus;

USBHostPrinter.getPortStatus(handle, bufStatus);

6.9.4 softReset()

Syntax

VN_STATUS softReset(VN_HANDLE vnHandle);

Description
Sends a soft reset class request to the USB printer.

Parameters

vnHandle: the handle initialized by open()

Copyright © 2012 Future Technology Devices International Ltd. 580

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Returns
One of the status messages:

VINCO_USBHOSTPRINTER_OK

VINCO_USBHOSTPRINTER_UNSUCCESSFUL

Usage

USBHostPrinter.softReset(vnHandle);

Example
VN_HANDLE handle;

USBHostPrinter.softReset(handle);

6.9.5 write()

Syntax

VN_STATUS write(VN_HANDLE vnHandle, uint8* data, uint16 numBytesToWrite, uint16*
numBytesWritten);

Description
Sends a soft reset class request to the USB printer.

Parameters

vnHandle: the handle initialized by open()

data: the pointer to an array containing the data

numBytesToWrite: number of bytes to write

numBytesWritten: number of bytes actually written

Returns
One of the status messages:

VINCO_USBHOSTPRINTER_OK

VINCO_USBHOSTPRINTER_UNSUCCESSFUL

Usage

USBHostPrinter.write(vnHandle, *data, numBytesToWrite, *numBytesWritten);

Example
VN_HANDLE handle;

unsigned short numBytesToWrite = 6;

unsigned short numBytesWritten;

unsigned char data = "Hello!";

USBHostPrinter.write(handle, data, numBytesToWrite, &numBytesWritten);

6.9.6 close()

Syntax

VN_STATUS close(VN_HANDLE vnHandle);

Description
Close a handle to the USB Host Printer driver

Parameters

vnHandle: an initialized handle

Returns
VINCO_USBHOSTPRINTER_OK

Copyright © 2012 Future Technology Devices International Ltd. 581

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Usage

USBHostPrinter.close(vnHandle);

Example
VN_HANDLE handle;

USBHostPrinter.close(handle);

6.10 USB Host FT232 Library

6.10.1 open()

Syntax

VN_STATUS open(VN_HANDLE* vnHandle);

Description
Open a handle to the USB Host FT232 driver

Parameters

vnHandle: an un-initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.open(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.open(&handle);

6.10.2 reset()

Syntax

VN_STATUS reset(VN_HANDLE vnHandle);

Description
Perform a hardware reset

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.reset(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.reset(handle);

Copyright © 2012 Future Technology Devices International Ltd. 582

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.10.3 getRXStatus()

Syntax

VN_STATUS getRXStatus(VN_HANDLE vnHandle, unsigned short *queueStatus);

Description
Returns the number of bytes in the receive queue

Parameters

vnHandle: an initialized handle

queueStatus: a pointer to the variable that contains the number of bytes to read

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.getRXStatus(vnHandle, *queueStatus);

Example
VN_HANDLE handle;

unsigned short numBytesAvail;

USBHostFT232.getRXStatus(handle, &numBytesAvail);

6.10.4 getTXStatus()

Syntax

VN_STATUS getTXStatus(VN_HANDLE vnHandle, unsigned short *queueStatus);

Description
Returns the number of bytes in the transmit queue

Parameters

vnHandle: an initialized handle

queueStatus: a pointer to the variable that contains the number of bytes in the queue

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.getTXStatus(vnHandle, *queueStatus);

Example
VN_HANDLE handle;

unsigned short numBytes;

USBHostFT232.getTXStatus(handle, &numBytes);

6.10.5 getModemStatus()

Syntax

VN_STATUS getModemStatus(VN_HANDLE vnHandle, unsigned char *modemStatus);

Description
Get the modem status

Parameters

vnHandle: an initialized handle

Copyright © 2012 Future Technology Devices International Ltd. 583

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

modemStatus: a pointer to the variable that contains the modem status

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.getModemStatus(vnHandle, *modemStatus);

Example
VN_HANDLE handle;

unsigned short modemStatus;

USBHostFT232.getModemStatus(handle, &modemStatus);

6.10.6 getLineStatus()

Syntax

VN_STATUS getLineStatus(VN_HANDLE vnHandle, unsigned char *lineStatus);

Description
Get the last line status value

Parameters

vnHandle: an initialized handle

lineStatus: a pointer to the variable that contains the line status

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.getLineStatus(vnHandle, *lineStatus);

Example
VN_HANDLE handle;

unsigned short lineStatus;

USBHostFT232.getLineStatus(handle, &lineStatus);

6.10.7 setBaudRate()

Syntax

VN_STATUS setBaudRate(VN_HANDLE vnHandle, unsigned long baudRate);

Description
Set the baud rate.

Parameters

vnHandle: an initialized handle

baudRate: the desired baud rate. Predefined values are available for:

USBHOSTFT232_BAUD_300

USBHOSTFT232_BAUD_600

USBHOSTFT232_BAUD_1200

USBHOSTFT232_BAUD_2400

USBHOSTFT232_BAUD_4800

USBHOSTFT232_BAUD_9600

USBHOSTFT232_BAUD_19200

USBHOSTFT232_BAUD_38400

Copyright © 2012 Future Technology Devices International Ltd. 584

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

USBHOSTFT232_BAUD_57600

USBHOSTFT232_BAUD_115200

USBHOSTFT232_BAUD_256000

USBHOSTFT232_BAUD_500000

USBHOSTFT232_BAUD_1000000

USBHOSTFT232_BAUD_1500000

USBHOSTFT232_BAUD_2000000

USBHOSTFT232_BAUD_3000000

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setBaudRate(vnHandle, baudRate);

Example
VN_HANDLE handle;

USBHostFT232.getLineStatus(handle, USBHOSTFT232_BAUD_9600);

6.10.8 setFlowControl()

Syntax

VN_STATUS setFlowControl(VN_HANDLE vnHandle, unsigned char flowControl);

Description
Set the flow control scheme.

Parameters

vnHandle: an initialized handle

flowControl: the desired flow control scheme. Predefined values are available for:

USBHOSTFT232_FLOW_NONE

USBHOSTFT232_FLOW_RTS_CTS

USBHOSTFT232_FLOW_DTR_DSR

USBHOSTFT232_FLOW_XON_XOFF

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setFlowControl(vnHandle, flowControl);

Example
VN_HANDLE handle;

USBHostFT232.setFlowControl(handle, USBHOSTFT232_FLOW_NONE);

6.10.9 setDataBits()

Syntax

Copyright © 2012 Future Technology Devices International Ltd. 585

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VN_STATUS setDataBits(VN_HANDLE vnHandle, unsigned char dataBits);

Description
Set the number of data bits.

Parameters

vnHandle: an initialized handle

dataBits: the number of data bits. Predefined values are available for:

USBHOSTFT232_DATA_BITS_7

USBHOSTFT232_DATA_BITS_8

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setDataBits(vnHandle, dataBits);

Example
VN_HANDLE handle;

USBHostFT232.setDataBits(handle, USBHOSTFT232_DATA_BITS_8);

6.10.10 setStopBits()

Syntax

VN_STATUS setStopBits(VN_HANDLE vnHandle, unsigned char stopBits);

Description
Set the number of stop bits.

Parameters

vnHandle: an initialized handle

dataBits: the number of stop bits. Predefined values are available for:

USBHOSTFT232_STOP_BITS_1

USBHOSTFT232_STOP_BITS_2

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setStopBits(vnHandle, stopBits);

Example
VN_HANDLE handle;

USBHostFT232.setStopBits(handle, USBHOSTFT232_STOP_BITS_1);

6.10.11 setParity()

Syntax

VN_STATUS setParity(VN_HANDLE vnHandle, unsigned char parity);

Copyright © 2012 Future Technology Devices International Ltd. 586

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Description
Set the parity.

Parameters

vnHandle: an initialized handle

parity: the parity. Predefined values are available for:

USBHOSTFT232_PARITY_NONE

USBHOSTFT232_PARITY_ODD

USBHOSTFT232_PARITY_EVEN

USBHOSTFT232_PARITY_MARK

USBHOSTFT232_PARITY_SPACE

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setParity(vnHandle, parity);

Example
VN_HANDLE handle;

USBHostFT232.setParity(handle, USBHOSTFT232_PARITY_NONE);

6.10.12 setRTS()

Syntax

VN_STATUS setRTS(VN_HANDLE vnHandle);

Description
Enables the RTS line to be controlled by the flow control if CTS/RTS is selected for flow

control.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setRTS(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.setRTS(handle);

6.10.13 clearRTS()

Syntax

VN_STATUS clearRTS(VN_HANDLE vnHandle);

Description

Copyright © 2012 Future Technology Devices International Ltd. 587

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Unconditionally deassert the RTS line.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.clearRTS(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.clearRTS(handle);

6.10.14 setDTR()

Syntax

VN_STATUS setDTR(VN_HANDLE vnHandle);

Description
Enables the DTR line to be controlled by the flow control if DTR/DSR is selected for flow

control.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setDTR(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.setDTR(handle);

6.10.15 clearDTR()

Syntax

VN_STATUS clearDTR(VN_HANDLE vnHandle);

Description
Unconditionally deassert the DTR line.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

Copyright © 2012 Future Technology Devices International Ltd. 588

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.clearDTR(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.clearDTR(handle);

6.10.16 setBreakOn()

Syntax

VN_STATUS setBreakOn(VN_HANDLE vnHandle);

Description
Set line break condition.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setBreakOn(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.setBreakOn(handle);

6.10.17 setBreakOff()

Syntax

VN_STATUS setBreakOff(VN_HANDLE vnHandle);

Description
Clear line break condition.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setBreakOff(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.setBreakOff(handle);

Copyright © 2012 Future Technology Devices International Ltd. 589

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.10.18 setXON()

Syntax

VN_STATUS setXON(VN_HANDLE vnHandle);

Description
Set the XON character to be used for UART_FLOW_XON_XOFF.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setXON(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.setXON(handle);

6.10.19 setXOFF()

Syntax

VN_STATUS setXOFF(VN_HANDLE vnHandle);

Description
Set the Xoff character to be used with UART_FLOW_XON_XOFF.

Parameters

vnHandle: an initialized handle

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setXOFF(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.setXOFF(handle);

6.10.20 setLatency()

Syntax

VN_STATUS setLatency(VN_HANDLE vnHandle, unsigned char latency);

Description
Sets the latency timer of the device.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 590

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vnHandle: an initialized handle

latency: the latency period

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setLatency(vnHandle, latency);

Example
VN_HANDLE handle;

USBHostFT232.setLatency(handle, 100);

6.10.21 getLatency()

Syntax

VN_STATUS getLatency(VN_HANDLE vnHandle, unsigned char *latency);

Description
Sets the latency timer of the device.

Parameters

vnHandle: an initialized handle

latency: a pointer to the variable containing the latency period

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.getLatency(vnHandle, *latency);

Example
VN_HANDLE handle;

unsigned char latency;

USBHostFT232.getLatency(handle, &latency);

6.10.22 setBitMode()

Syntax

VN_STATUS setBitMode(VN_HANDLE vnHandle, unsigned char mode, unsigned char
mask);

Description
Sets the mode of various functions of the device. Functions and supported modes are device

dependent.

Parameters

vnHandle: an initialized handle

mode: the bit mode. Available bit modes are:

USBHOSTFT232_BIT_MODE_RESET

USBHOSTFT232_BIT_MODE_ASYNCHRONOUS_BIT_BANG

Copyright © 2012 Future Technology Devices International Ltd. 591

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

USBHOSTFT232_BIT_MODE_MPSSE

USBHOSTFT232_BIT_MODE_SYNCHRONOUS_BIT_BANG

USBHOSTFT232_BIT_MODE_MCU_HOST_BUS_EMULATION

USBHOSTFT232_BIT_MODE_FAST_SERIAL

USBHOSTFT232_BIT_MODE_CBUS_BIT_BANG

USBHOSTFT232_BIT_MODE_SYNCHRONOUS_FIFO

mask: the mask for the bit mode

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.setBitMode(vnHandle, mode, mask);

Example
VN_HANDLE handle;

USBHostFT232.setLatency(handle, USBHOSTFT232_BIT_MODE_ASYNCHRONOUS_BIT_BANG, 0xFF);

6.10.23 getBitMode()

Syntax

VN_STATUS getBitMode(VN_HANDLE vnHandle, unsigned char *mode);

Description
Gets the current pin states of the device. Pins and supported modes are device dependent.

Parameters

vnHandle: an initialized handle

mode: a pointer to the variable containing the mode

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.getBitMode(vnHandle, *mode);

Example
VN_HANDLE handle;

unsigned char mode;

USBHostFT232.getBitMode(handle, &mode);

6.10.24 readEEPROM()

Syntax

VN_STATUS readEEPROM(VN_HANDLE vnHandle, unsigned short addr, unsigned short
*data);

Description
Read a byte from the EEPROM of a device. The EEPROM addresses and size are device

dependent.

Copyright © 2012 Future Technology Devices International Ltd. 592

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

vnHandle: an initialized handle

addr: the ROM address to read from

data: a pointer to the variable that will contain the ROM value

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.readEEPROM(vnHandle, addr, *data);

Example
VN_HANDLE handle;

unsigned short data;

USBHostFT232.readEEPROM(handle, 0x1234, &data);

6.10.25 writeEEPROM()

Syntax

VN_STATUS writeEEPROM(VN_HANDLE vnHandle, unsigned short addr, unsigned short
data);

Description
Write a byte to the EEPROM of a device. The EEPROM addresses and size are device

dependent.

Parameters

vnHandle: an initialized handle

addr: the ROM address to write to

data: the data to write

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.writeEEPROM(vnHandle, addr, data);

Example
VN_HANDLE handle;

unsigned short data = 0xFFFF;

USBHostFT232.writeEEPROM(handle, 0x1234, data);

6.10.26 startPoll()

Syntax

VN_STATUS startPoll(VN_HANDLE vnHandle);

Description
Signals the driver to start polling the attached device.

Parameters

Copyright © 2012 Future Technology Devices International Ltd. 593

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

vnHandle: an initialized handle

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.startPoll(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.startPoll(handle);

6.10.27 stopPoll()

Syntax

VN_STATUS stopPoll(VN_HANDLE vnHandle);

Description
Signals the driver to stop polling the attached device.

Parameters

vnHandle: an initialized handle

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.stopPoll(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.stopPoll(handle);

6.10.28 write()

Syntax

VN_STATUS write(VN_HANDLE vnHandle, unsigned char *data, unsigned short
numBytesToWrite, unsigned short *numBytesWritten);

Description
Write data to a FT232 device.

Parameters

vnHandle: an initialized handle

data: a pointer pointing to the data to write

numBytesToWrite: number of bytes to write

numBytesWritten: number of bytes written

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.write(vnHandle, *data, numBytesToWrite, *numBytesWritten);

Example

Copyright © 2012 Future Technology Devices International Ltd. 594

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VN_HANDLE handle;

unsigned short numBytesToWrite = 1;

unsigned short numBytesWritten;

unsigned char data = 0x00;

USBHostFT232.write(handle, data, numBytesToWrite, &numBytesWritten);

6.10.29 read()

Syntax

VN_STATUS read(VN_HANDLE vnHandle, unsigned char *data, unsigned short
numBytesToRead, unsigned short *numBytesRead);

Description
Write data to a FT232 device.

Parameters

vnHandle: an initialized handle

data: a pointer pointing to the array containing the read data

numBytesToRead: number of bytes to read

numBytesRead: number of bytes read

Returns
One of the status messages:

VINCO_USBHOSTFT232_OK

VINCO_USBHOSTFT232_UNSUCCESSFUL

Usage

USBHostFT232.read(vnHandle, *data, numBytesToRead, *numBytesRead);

Example
VN_HANDLE handle;

unsigned short numBytesToRead = 1;

unsigned short numBytesRead;

unsigned char data;

USBHostFT232.read(handle, &data, numBytesToRead, &numBytesRead);

6.10.30 close()

Syntax

VN_STATUS close(VN_HANDLE vnHandle);

Description
Close a handle to the USB Host FT232 driver

Parameters

vnHandle: an initialized handle

Returns
VINCO_USBHOSTFT232_OK

Usage

USBHostFT232.close(vnHandle);

Example
VN_HANDLE handle;

USBHostFT232.close(handle);

Copyright © 2012 Future Technology Devices International Ltd. 595

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.11 USBSlaveFT232

6.11.1 open()

Syntax

VN_STATUS open(VN_HANDLE* vnHandle);

Description
Open a handle to the USB Slave FT232 driver

Parameters

vnHandle: an un-initialized handle

Returns
One of the status messages:

VINCO_USBSLAVEFT232_OK

VINCO_USBSLAVEFT232_UNSUCCESSFUL

Usage

USBSlaveFT232.open(vnHandle);

Example
VN_HANDLE handle;

USBSlaveFT232.open(&handle);

6.11.2 getRXStatus()

Syntax

VN_STATUS getRXStatus(VN_HANDLE vnHandle, unsigned short *status);

Description
Returns the number of bytes in the receive queue

Parameters

vnHandle: an initialized handle

status: a pointer to the variable that contains the number of bytes to read

Returns
VINCO_USBSLAVEFT232_OK

Usage

USBSlaveFT232.getRXStatus(vnHandle, *status);

Example
VN_HANDLE handle;

unsigned short numBytesAvail;

USBSlaveFT232.getRXStatus(handle, &numBytesAvail);

6.11.3 setLatency()

Syntax

VN_STATUS setLatency(VN_HANDLE vnHandle, unsigned char latency);

Description
Sets the latency timer of the device.

Copyright © 2012 Future Technology Devices International Ltd. 596

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Parameters

vnHandle: an initialized handle

latency: the latency period

Returns
One of the status messages:

VINCO_USBSLAVEFT232_OK

VINCO_USBSLAVEFT232_UNSUCCESSFUL

Usage

USBSlaveFT232.setLatency(vnHandle, latency);

Example
VN_HANDLE handle;

USBSlaveFT232.setLatency(handle, 100);

6.11.4 setDescriptors()

Syntax

VN_STATUS setDescriptors(VN_HANDLE vnHandle, ft232DevDescriptors *descriptors);

Description
Set user-specified descriptors for an FT232 device.

Parameters

vnHandle: The USBSlaveFT232 handle created by VN_USBSlaveFT232Open.

descriptors: A pointer to a usbslaveft232_ioctl_cb_descriptors_t struct.

Note: ft232DevDescriptors is just another name of
usbslaveft232_ioctl_cb_descriptors_t

Returns
One of the status messages:

VINCO_USBSLAVEFT232_OK

VINCO_USBSLAVEFT232_UNSUCCESSFUL

Usage

USBSlaveFT232.setDescriptors(vnHandle, *descriptors);

Example
VN_HANDLE handle;

ft232DevDescriptors desc_cb;

unsigned char manu_desc[10] = {

 10,

 USB_DESCRIPTOR_TYPE_STRING,

 0x41, 0x00,

 0x43, 0x00,

 0x4d, 0x00,

 0x45, 0x00

};

// initialise descriptors

desc_cb.device_descriptor.idVendor = USB_VID_FTDI;

desc_cb.device_descriptor.idProduct = USB_PID_FTDI_FT232;

desc_cb.device_descriptor.iManufacturer = FT232_STRING_INDEX_MANUFACTURER;

desc_cb.device_descriptor.iProduct = FT232_STRING_INDEX_PRODUCT;

desc_cb.device_descriptor.iSerialNumber = FT232_STRING_INDEX_SERIAL_NUMBER;

desc_cb.device_descriptor.use = 1;

desc_cb.config_descriptor.bmAttributes = 0xa0;

Copyright © 2012 Future Technology Devices International Ltd. 597

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

desc_cb.config_descriptor.bMaxPower = 0x2d;

desc_cb.config_descriptor.use = 1;

desc_cb.manufacturer_string = (usb_deviceStringDescriptor_t *) manu_desc;

USBSlaveFT232.setDescriptors(handle, &desc_cb);

6.11.5 setOutTransferSize()

Syntax

VN_STATUS setOutTransferSize(VN_HANDLE vnHandle, unsigned long size);

Description
Set max packet size for out transfer (for customers who want better performance)..

Parameters

vnHandle: The USBSlaveFT232 handle created by VN_USBSlaveFT232Open.

size: The max packet size.

Returns
One of the status messages:

VINCO_USBSLAVEFT232_OK

VINCO_USBSLAVEFT232_UNSUCCESSFUL

Usage

USBSlaveFT232.setOutTransferSize(vnHandle, size);

Example
VN_HANDLE handle;

USBSlaveFT232.setOutTransferSize(handle, 1234);

6.11.6 read()

Syntax

VN_STATUS read(VN_HANDLE vnHandle, unsigned char *data, unsigned short
numBytesToRead, unsigned short *numBytesRead);

Description
Read data from a FT232 device.

Parameters

vnHandle: an initialized handle

data: a pointer pointing to the array containing the read data

numBytesToRead: number of bytes to read

numBytesRead: number of bytes read

Returns
One of the status messages:

VINCO_USBSLAVEFT232_OK

VINCO_USBSLAVEFT232_UNSUCCESSFUL

Usage

USBSlaveFT232.read(vnHandle, *data, numBytesToRead, *numBytesRead);

Example
VN_HANDLE handle;

unsigned short numBytesToRead = 1;

unsigned short numBytesRead;

Copyright © 2012 Future Technology Devices International Ltd. 598

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

unsigned char data;

USBSlaveFT232.read(handle, &data, numBytesToRead, &numBytesRead);

6.11.7 write()

Syntax

VN_STATUS write(VN_HANDLE vnHandle, unsigned char *data, unsigned short
numBytesToWrite, unsigned short *numBytesWritten);

Description
Write data to a FT232 device.

Parameters

vnHandle: an initialized handle

data: a pointer pointing to the data to write

numBytesToWrite: number of bytes to write

numBytesWritten: number of bytes written

Returns
One of the status messages:

VINCO_USBSLAVEFT232_OK

VINCO_USBSLAVEFT232_UNSUCCESSFUL

Usage

USBSlaveFT232.write(vnHandle, *data, numBytesToWrite, *numBytesWritten);

Example
VN_HANDLE handle;

unsigned short numBytesToWrite = 1;

unsigned short numBytesWritten;

unsigned char data = 0x00;

USBSlaveFT232.write(handle, data, numBytesToWrite, &numBytesWritten);

6.11.8 close()

Syntax

VN_STATUS close(VN_HANDLE vnHandle);

Description
Close a handle to the USB Host FT232 driver

Parameters

vnHandle: an initialized handle

Returns
VINCO_USBSLAVEFT232_OK

Usage

USBSlaveFT232.close(vnHandle);

Example
VN_HANDLE handle;

USBSlaveFT232.close(handle);

Copyright © 2012 Future Technology Devices International Ltd. 599

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.12 USB Host HID Library

6.12.1 open()

Syntax

uint8 open (VN_HANDLE* vnHandle, uint16 class, uint16 subClass, uint16 protocol);

Description
Get a handle to the HID class device with matching class, subclass and protocol.

Parameters

vnHandle: handle to the HID class device

class: value of USB class code

subClass: value of USB HID subclass code

protocol: value of USB HID protocol code

Returns
VINCO_USBHOSTHID_OK when the handle to the HID class device is opened successfully.
The value of the handle is in vnHandle.

VINCO_USBHOSTHID_ERROR when the handle to the HID class device failed to open.

Usage

USBHostHID.open (vnHandle, class, subclass, protocol);

Example
VOS_HANDLE hUSBHOST_HID;

status = USBHostHID.open(&hUSBHOST_HID, USB_CLASS_HID, USB_SUBCLASS_ANY,

USB_PROTOCOL_HID_KEYBOARD);

6.12.2 getDescriptor()

Syntax

uint8 getDescriptor (VN_HANDLE vnHandle, uint8 descriptorType, uint8 descriptorIndex,
uint8* descriptorBuffer, uint8* descriptorLength);

Description
Get the USB HID class descriptor based on the descriptor type and descriptor index.

Parameters

vnHandle: handle to the HID class device

descriptorType: type of the descriptor

descriptorIndex: index of the descriptor

descriptorBuffer: pointer to the descriptor buffer to receive the descriptor

descriptorLength: length of the descriptor

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.getDescriptor(vnHandle, descriptorType, descriptorIndex, descriptorBuffer,
descriptorLength);

Example
VOS_HANDLE hUSBHOST_HID;

uint8 descriptorType, descriptorIndex, descriptorBuffer[64];

uint8 descriptorLength;

Copyright © 2012 Future Technology Devices International Ltd. 600

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

descriptorType = USB_DESCRIPTOR_TYPE_REPORT;

descriptorIndex = 0;

descriptorLength = 64;

status = USBHostHID.getDescriptor (hUSBHOST_HID, descriptorType, descriptorIndex,

descriptorBuffer, descriptorLength);

6.12.3 getReport()

Syntax

uint8 getReport (VN_HANDLE vnHandle, uint8 reportType, uint8 reportID, uint8*
reportBuffer, uint16 reportLength);

Description
Get the USB HID report of the specified report type and report ID.

Parameters

vnHandle: handle to the HID class device

reportType: type of the report

reportID: report ID

reportBuffer: pointer to the report buffer to receive the report data

reportLength: length of the report

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.getReport (vnHandle, reportType, reportID, reportBuffer, reportLength);

Example
VOS_HANDLE hUSBHOST_HID;

uint8 reportType, reportID, reportBuffer[8];

uint16 reportLength;

reportType = USB_HID_REPORT_TYPE_INPUT;

reportID = 0;

reportLength = 8;

status= USBHostHID.getReport(hUSBHOST_HID, reportType, reportID, reportBuffer,

reportLength);

6.12.4 setReport()

Syntax

uint8 setReport (VN_HANDLE vnHandle, uint8 reportType, uint8 reportID, uint8*
reportBuffer, uint16 reportLength);

Description
Set the USB HID report for the specified report type and report id.

Parameters

vnHandle: handle to the HID class device

reportType: type of the report

reportID: report ID

reportBuffer: pointer to the report buffer containing the report data

reportLength: length of the report

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Copyright © 2012 Future Technology Devices International Ltd. 601

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

Usage

USBHostHID.setReport (vnHandle, reportType, reportID, reportBuffer, reportLength);

Example
VOS_HANDLE hUSBHOST_HID;

uint8 reportType, reportID, reportBuffer[8], i;

uint16 reportLength;

reportType = USB_HID_REPORT_TYPE_OUTPUT;

reportID = 0;

for (i = 0; i < 8 ; i++)

reportBuffer[i] = 0x00;

reportLength = 8;

status= USBHostHID.getReport(hUSBHOST_HID, reportType, reportID, reportBuffer,

reportLength);

6.12.5 getProtocol()

Syntax

uint8 getProtocol (VN_HANDLE vnHandle, uint8* protocolType);

Description
Get the current active protocol.

Parameters

vnHandle: handle to the HID class device

protocolType: pointer to the char receiving the value of the active protocol

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.getProtocol (vnHandle, protocolType);

Example
VOS_HANDLE hUSBHOST_HID;

uint8 protocolType;

status= USBHostHID.getProtocol (hUSBHOST_HID, &protocolType);

6.12.6 setProtocol()

Syntax

uint8 setProtocol (VN_HANDLE vnHandle, uint8 protocolType) ;

Description
Set the current active protocol.

Parameters

vnHandle: handle to the HID class device

protocolType: type of protocol (boot or report protocol)

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.setProtocol (vnHandle, protocolType);

Example

Copyright © 2012 Future Technology Devices International Ltd. 602

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

VOS_HANDLE hUSBHOST_HID;

status= USBHostHID.setProtocol (hUSBHOST_HID, USB_HID_PROTOCOL_TYPE_REPORT);

6.12.7 getIdle()

Syntax

uint8 getIdle (VN_HANDLE vnHandle, uint8 reportID, uint8* idleDuration);

Description
Get the idle duration of the input report with the specified report id.

Parameters

vnHandle: handle to the HID class device

reportID: report ID

idleDuration: pointer to the char to receive the idle duration

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.getIdle (vnHandle, reportID, idleDuration);

Example
VOS_HANDLE hUSBHOST_HID;

Uint8 reportID, idleDuration;

reportID = 0;

status= USBHostHID.getIdle (hUSBHOST_HID, reportID, &idleDuration);

6.12.8 setIdle()

Syntax

uint8 setIdle (VN_HANDLE vnHandle, uint8 reportID, uint8 idleDuration);

Description
Set the idle duration of the input report with the specified report id.

Parameters

vnHandle: handle to the HID class device

reportID: report ID

idleDuration: idle duration

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.setIdle (vnHandle, reportID, idleDuration);

Example
VOS_HANDLE hUSBHOST_HID;

uint8 reportID, idleDuration;

reportID = 0;

idleDuration = 0x20;

status= USBHostHID.setIdle (hUSBHOST_HID, reportID, idleDuration);

Copyright © 2012 Future Technology Devices International Ltd. 603

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

6.12.9 read()

Syntax

uint8 read (VN_HANDLE vnHandle, uint8* readBuffer, uint16 bytesToRead, uint16*
bytesRead);

Description
Read the data from the input report.

Parameters

vnHandle: handle to the HID class device

readBuffer: pointer to the buffer to receive data

bytesToRead: number of bytes to read

bytesRead: number of bytes actually read

Returns
VINCO_USBHOSTHID_OK when command completion is successful.

Usage

USBHostHID.read (vnHandle, readBuffer, bytesToRead, bytesRead);

Example
VOS_HANDLE hUSBHOST_HID;

uint8 report[8];

uint16 bytesToRead, bytesRead;

bytesToRead = 8;

status= USBHostHID.read(hUSBHOST_HID, &report, bytesToRead, &bytesRead);

6.12.10 close()

Syntax

uint8 close (VOS_HANDLE vnHandle);

Description
Close the USB HID class device.

Parameters

vnHandle: handle to the HID class device

Returns
Always returns VINCO_USBHOSTHID_OK.

Usage

USBHostHID.close (vnHandle);

Example
VOS_HANDLE hUSBHOST_HID;

status= USBHostHID.close (hUSBHOST_HID);

Copyright © 2012 Future Technology Devices International Ltd. 604

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

7 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)

2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8797 1330
Fax: +886 (0) 2 8751 9737

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
Shanghai, 200051
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-Mail (Sales): cn.sales@ftdichip.com
E-Mail (Support): cn.support@ftdichip.com
E-Mail (General Enquiries): cn.admin1@ftdichip.com
Web Site URL: http://www.ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s)
and sales representative(s) in your country.

Vinculum is part of Future Technology Devices International Ltd. Neither the whole nor any part of the

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com
http://www.ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com
http://www.ftdichip.com/

Copyright © 2012 Future Technology Devices International Ltd. 605

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

information contained in, or the product described in this manual, may be adapted or reproduced in any
material or electronic form without the prior written consent of the copyright holder. This product and its
documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose
is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages
howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This
product or any variant of it is not intended for use in any medical appliance, device or system in which the
failure of the product might reasonably be expected to result in personal injury. This document provides
preliminary information that may be subject to change without notice. No freedom to use patents or other
intellectual property rights is implied by the publication of this document. Future Technology Devices
International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom.
Scotland Registered Number: SC136640

Copyright © 2012 Future Technology Devices International Ltd. 606

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

8 Revision History

V1.0.2
Initial Vinculum II Toolchain Release 21 Apr 2010

V1.0.4
Update Toolchain and Documentation 12 May 2010

V1.2.0
Add Samples and Getting Started Sections
Update Drivers and Libraries Sections

27 July 2010

V1.2.2
Add details to vos_wait_semaphore_ex
New IOCTLs for USBSlave Driver
Return values for driver init() functions

5th Oct 2010

V1.2.2-SP1
Updates for USB Slave driver, new IOCTL calls for endpoint
control, disconnect detection and configuration changes
Add in SD Card and ADC_MCP3008 drivers and documentation
Add clarification on string usage in compiler
Update preprocessor predefined directives
Include warning concerning signed modulus operations
Add reference for enabling GPIO interrupts

20th Dec 2010

V1.4.0
Added USBHost CDC Driver and USB Printer, MCP3008 ADC Driver,
SD Card Driver and Timer Driver example code
Detail added to USBHost, USBSlave drivers, Kernel and IOMux
setup
VinIDE sections updates for Thread Manager, Application Wizard

16th Feb 2011

V1.4.0-SP1
Corrected all use of usbhost_ep_handle. Improved USBHost
section on SETUP transfer IOCTLs. Clarified that read and write
functions of USBHost cannot access control endpoints.
Added clarification on VOS_IOCTL_COMMON_ENABLE_DMA.
Added fat_fileCopy() function.

12th May 2011

V1.4.2
Corrected FAT examples. Added USBSlave sample code for setting
endpoint sizes. Added references to DMA modes in
VOS_IOCTL_COMMON_ENABLE_DMA. Corrected usage of
usbhost_ep_handle in USBHost samples. Added Fat_FileCopy
function. Added
VOS_IOCTL_SPI_MASTER_ENABLE_AUTO_TOGGLE. Corrected
UART line status sample. Added ethernet driver documentation.
Added VinPrg and VinUser instructions. Updated vos_wdt_enable
documentation.
Added flash and firmware update API documentation.
Added Android Open Accessory driver documentation.
Added RTC driver documentation.

12th July 2011

V1.4.4
Added in MP3VS1053 information.
Update Thread Manager and App Wizard IOMux information.
Corrections for BOMS, FAT, StillImage, and other USBHost related
attach examples.
Correction in fat_open() function.
Added missing IOCTL in SPI Master IOCTL calls page.
Improved USBHost device and endpoint explanations, IOCTL
functions.
Added information to vos_create_thread(), vos_iocell_get_config
(), vos_ioctl_set_config() pages.
Added clearer explanation of ROM file format to Special VNC2
Reference section.
Update USBSlave IOCTLs for added clarity.
Added USBHostHID documentation.
Vinco libraries section added.
Add fat_fileFlush(), VOS_IOCTL_FAT_FILE_FLUSH and fflush()
sections. Clarify requirements for closing or flushing file in FAT
driver.
Added 'Threads' section to Application Wizard.

V2.0.0
Added sprintf, remove and rename to Firmware Libraries.
Correct use of fat_context_t to the correct fat_context in

Copyright © 2012 Future Technology Devices International Ltd. 607

Document Reference No.: FT_000289
Vinculum II User Guide

AN_151 User Manual Version 2.0.0
Clearance No.: FTDI# xxx

examples for FAT driver.
Add chapter for unistd library.
Added notes about members of usbhost_xfer_t and
usbhost_xfer_iso_t which are modified.
Added kernel memory management section.
Corrected spelling.
Reinstated VOS_IOCTL_USBHUB_ENUMERATE page.
Added write support to the USBHost HID driver topic.
Updated Getting Started Guide section.

	Introduction
	Getting Started Guide
	Introduction
	Overview
	Building Your First Application
	Writing 'Hello World' Application
	Writing an Application
	Code Listing

	Toolchain
	Toolchain Basics
	VinC Compiler
	Compiler Command Line Options
	Compiler File Type
	Compile Stage Selection
	Compiler Output
	Compiler Information Options
	Compile Time Options
	Preprocessing Options
	Linker Options

	Data Types
	Type Qualifiers
	Storage Type Specifiers
	Type Specifiers
	Data Conversion References

	Special VNC2 Reference
	ANSI C Feature Support Summary
	C Language Restrictions
	Special Features
	Accessing ports
	Bit mapping
	ROM Access

	Function Call
	Calling ASM File from C
	Calling C from ASM

	Architecture Issues
	Considerations of local vs global variables
	String Literals
	Sequence Points

	Error reference
	Examples for General Errors
	Examples for Syntax Error Codes
	Examples for General Syntax Error Codes
	Examples for Conditional Statement Error Codes
	Examples for Storage Classes Error Codes
	Examples for Declaration Error Codes
	Examples for Constant Range Error Codes
	Examples for Constant Error Codes
	Examples for Variable Error Codes
	Examples for Array Error Codes
	Examples for Structure Union Error Codes
	Examples for Initialisation Error Codes
	Examples for Function Error Codes
	Examples for Pointer Error Codes
	Examples for Bitfield Error Codes

	Pre-processor
	Pre-processor Directives
	Predefined Macros

	Error reference
	Examples for Directive Error Codes
	Examples for File Error Codes
	Examples for General Error Codes

	VinAsm Assembler
	Assembler Command Line Options
	Assembly Language
	Lexical Conventions
	Comments
	Functions
	Identifiers
	Keywords
	Labels
	Numeric Value
	White Space Characters

	Assembler Directives
	Data Directives
	.ASCII Directive
	.ASCIIZ Directive
	.CONST Directive
	.DATA_DEF Directive
	.DATA_DEF_END Directive
	.DATA_INIT Directive
	.DB Directive
	.DD Directive
	.DW Directive

	Debugger Directives
	.ENUM Directive
	.ENUMERATOR Directive
	.ENUM_END Directive
	.FILE Directive
	.FUNCTION Directive
	.FUNC_END Directive
	.LINE Directive
	.PARAMETER Directive
	.RETURN Directive
	.STRUCT Directive
	.STRUCTMEM Directive
	.STRUCT_END Directive
	.TYPEDEF Directive
	.UNION Directive
	.UNIONMEM Directive
	.UNION_END Directive
	.VARIABLE Directive

	End Directive
	.ENDP Directive

	File Inclusion Directive
	.INCLUDE Directive

	Location Control Directives
	.ABS Directive
	.BSS Directive
	.DATA Directive
	.EVEN Directive
	.ODD Directive
	.ORG Directive
	.TEXT Directive

	Symbol Declaration Directives
	.EQU Directive
	.GLOBAL Directive
	.LOCAL Directive
	.WEAK Directive

	Machine Instructions
	CPU General Instructions
	NOP
	HALT
	WAIT
	STOP
	RTS
	IRET
	HCF
	SAVEF
	SWAPF
	INT
	SETfl
	CLRfl
	CPYF
	TXL
	WRCODE

	CPU Stack Operation Instructions
	PUSHF
	POPF
	SP_INC
	SP_DEC
	SP_WR#
	SP_RD
	SP_STORE
	SP_LOAD
	PUSH#
	POP

	CPU Memory Operation Instructions
	LD#
	CPYROM
	CPYMEM

	CPU Bitwise Shift Operation Instructions
	SHR#
	SHL#
	SAR#
	SAL#
	ROR#
	ROL#
	RORC#
	ROLC#

	CPU Logic Operation Instructions
	AND#
	OR#
	XOR#
	XNOR#

	CPU Arithmetic Operation Codes
	ADD#
	ADC#
	SUB#
	SBC#
	MUL#
	DIV#
	REM#
	NEG#
	INC#
	DEC#

	CPU Bitwise Operation Instructions
	BTST#
	BCLR#
	BSET#
	INV#
	CPY#

	CPU I/O Operation Instructions
	OUTPORT
	ANDPORT
	ORPORT
	INPORT
	PORTTST

	CPU Comparison Instructions
	CMP#

	CPU Program Flow Instructions
	JUMP
	JGT
	JGE
	JLT
	JLE
	JNfl
	Jfl
	CALL
	CALLGT
	CALLGE
	CALLLT
	CALLLE
	CALLNfl
	CALLfl

	Error Reference

	VinL Linker
	Linker Command Line Options
	Memory and Segment
	Map File
	Archive File
	Error Reference
	Special VNC2 Reference

	VinIDE
	About VinIDE
	The User Interface
	The Tabbed Toolbar
	The File tab
	The Edit tab

	The Source Code Editor
	The Project Manager
	The Messages Window
	The Watchlist Window
	The Memory Window
	The Breakpoint Window
	Managing the Panels
	Docking/Undocking Panels
	Stacking Panels
	Pinning Panels
	Hiding Panels

	Using VinIDE
	Application Wizard
	New Project
	Target Module
	Drivers
	IOMux
	Kernel
	Threads
	Summary

	Project/File Handling
	Creating a new project
	Adding files to your project
	Adding new empty file
	Adding existing files
	Adding Libraries and Headers

	Saving the project and files
	Saving the project
	Saving individual files
	Saving the project and the files

	Opening an existing project
	Closing a file
	Closing a project
	Removing a file from the project

	Building a project
	What you need to do before you can build your project?
	Compiling a single source file
	Compiling the project
	Cleaning the build files

	Debugging a project
	What you need to be able to debug using the IDE?
	Debugging Commands
	Programming the chip

	Adding/Removing Breakpoints
	Adding Watch variable

	Project Options
	Bringing up the Project Options window
	The Directories Options
	Changing where the final output is stored
	Adding directories in the Include path option
	Adding directories in the Library paths option

	The Compiler Options
	The Assembler Options
	The Linker Options
	The Build Order

	The IDE Options
	Bringing up the IDE Options window
	Environment Options
	Editor Options
	Display Options
	Colour Options

	Plugins
	Code Inspector
	Thread Manager

	Keyboard Shortcuts

	VinPrg Programmer
	Programmer Command Line Options

	VinUser Customiser
	Customiser Command Line Options

	Firmware
	VOS Kernel
	VOS Definitions
	Kernel Configuration
	vos_init()
	vos_set_idle_thread_tcb_size()

	Thread Creation
	vos_create_thread()
	vos_create_thread_ex()

	Kernel Scheduler
	vos_start_scheduler()
	vos_delay_msecs()
	vos_delay_cancel()

	Mutexes
	vos_init_mutex()
	vos_lock_mutex()
	vos_trylock_mutex()
	vos_unlock_mutex()
	vos_get_priority_ceiling() Advanced
	vos_set_priority_ceiling() Advanced

	Semaphores
	vos_init_semaphore()
	vos_wait_semaphore()
	vos_wait_semaphore_ex()
	vos_signal_semaphore()
	vos_signal_semaphore_from_isr()

	Condition Variables
	vos_init_cond_var()
	vos_wait_cond_var()
	vos_signal_cond_var()

	Diagnostics
	vos_stack_usage()
	vos_start_profiler()
	vos_stop_profiler()
	vos_get_profile()
	vos_get_idle_thread_tcb()
	CPU Usage Example

	Critical Sections
	Device Manager
	Driver Initialisation
	vos_dev_init()
	vos_enable_interrupts() vos_disable_interrupts()

	Driver Operation
	vos_dev_open()
	vos_dev_close()
	vos_dev_read()
	vos_dev_write()
	vos_dev_ioctl()

	Hardware Information and Control
	vos_set_clock_frequency() and vos_get_clock_frequency()
	vos_get_package_type()
	vos_get_chip_revision()
	vos_power_down()
	vos_halt_cpu()
	vos_reset_vnc2()

	Watchdog Timer
	vos_wdt_enable()
	vos_wdt_clear()

	Kernel Services
	DMA Service
	DMA Service Return Codes
	vos_dma_acquire()
	vos_dma_release()
	vos_dma_configure()
	vos_dma_retained_configure()
	vos_dma_enable()
	vos_dma_disable()
	vos_dma_wait_on_complete()
	vos_dma_get_fifo_data_register()
	vos_dma_get_fifo_flow_control()
	vos_dma_get_fifo_count()
	vos_dma_get_fifo_data()

	IOMux Service
	IOMux Service Return Codes
	vos_iomux_define_input() and vos_iomux_define_output()
	vos_iomux_define_bidi()
	vos_iomux_disable_output()
	vos_iocell_get_config()
	vos_iocell_set_config()

	GPIO Service
	GPIO Service Return Codes
	vos_gpio_set_pin_mode()
	vos_gpio_set_port_mode()
	vos_gpio_set_all_mode()
	vos_gpio_read_pin()
	vos_gpio_read_port()
	vos_gpio_read_all()
	vos_gpio_write_pin()
	vos_gpio_write_port()
	vos_gpio_write_all()
	vos_gpio_enable_int()
	vos_gpio_disable_int()
	vos_gpio_wait_on_int()
	vos_gpio_wait_on_any_int()
	vos_gpio_wait_on_all_ints()

	Memory Management
	vos_malloc
	vos_free
	vos_heap_size
	vos_heap_space
	vos_memcpy
	vos_memset

	FTDI Drivers
	Hardware Device Drivers
	UART, SPI and FIFO Drivers
	Common Read and Write Operations
	Common IOCTL Calls
	VOS_IOCTL_COMMON_RESET
	VOS_IOCTL_COMMON_GET_RX_QUEUE_STATUS
	VOS_IOCTL_COMMON_GET_TX_QUEUE_STATUS
	VOS_IOCTL_COMMON_ENABLE_DMA
	VOS_IOCTL_COMMON_DISABLE_DMA

	UART Driver
	UART Return Codes
	UART IOCTL Calls
	VOS_IOCTL_UART_GET_MODEM_STATUS
	VOS_IOCTL_UART_GET_LINE_STATUS
	VOS_IOCTL_UART_SET_BAUD_RATE
	VOS_IOCTL_UART_SET_FLOW_CONTROL
	VOS_IOCTL_UART_SET_DATA_BITS
	VOS_IOCTL_UART_SET_STOP_BITS
	VOS_IOCTL_UART_SET_PARITY
	VOS_IOCTL_UART_SET_RTS
	VOS_IOCTL_UART_CLEAR_RTS
	VOS_IOCTL_UART_SET_DTR
	VOS_IOCTL_UART_CLEAR_DTR
	VOS_IOCTL_UART_SET_BREAK_ON
	VOS_IOCTL_UART_SET_BREAK_OFF
	VOS_IOCTL_UART_SET_XON_CHAR
	VOS_IOCTL_UART_SET_XOFF_CHAR
	VOS_IOCTL_UART_WAIT_ON_MODEM_STATUS_INT
	VOS_IOCTL_UART_WAIT_ON_LINE_STATUS_INT

	uart_init()

	FIFO Driver
	FIFO Return Codes
	FIFO IOCTL Calls
	VOS_IOCTL_FIFO_GET_STATUS
	VOS_IOCTL_FIFO_SET_MODE

	fifo_init()

	SPI Slave Driver
	SPI Slave Return Codes
	SPI Slave IOCTL Calls
	VOS_IOCTL_SPI_SLAVE_GET_STATUS
	VOS_IOCTL_SPI_SLAVE_SCK_CPHA
	VOS_IOCTL_SPI_SLAVE_SCK_CPOL
	VOS_IOCTL_SPI_SLAVE_DATA_ORDER
	VOS_IOCTL_SPI_SLAVE_SET_ADDRESS
	VOS_IOCTL_SPI_SLAVE_SET_MODE

	spislave_init()

	SPI Master Driver
	SPI Master Return Codes
	SPI Master IOCTL Calls
	VOS_IOCTL_SPI_MASTER_GET_STATUS
	VOS_IOCTL_SPI_MASTER_SCK_CPHA
	VOS_IOCTL_SPI_MASTER_SCK_CPOL
	VOS_IOCTL_SPI_MASTER_DATA_ORDER
	VOS_IOCTL_SPI_MASTER_SS_0 and VOS_IOCTL_SPI_MASTER_SS_1
	VOS_IOCTL_SPI_MASTER_SET_SCK_FREQUENCY
	VOS_IOCTL_SPI_MASTER_SET_DATA_DELAY
	VOS_IOCTL_SPI_MASTER_AUTO_TOGGLE_SS

	spimaster_init()

	USB Host Driver
	USB Host Concepts
	USB Host Detecting Connections
	USB Host Using Handles
	USB Host Finding Device Interfaces
	USB Host Finding Endpoints

	USB Host Sending and Receiving Data

	USB Host Return Codes
	USB Host Read and Write Operations
	USB Host General Transfer Block
	USB Host Isochronous Transfer Block

	USB Host IOCTL Calls
	VOS_IOCTL_USBHOST_GET_CONNECT_STATE
	VOS_IOCTL_USBHOST_GET_ENUMERATION_HANDLE
	VOS_IOCTL_USBHOST_ENUMERATE
	VOS_IOCTL_USBHOST_GET_USB_STATE
	VOS_IOCTL_USBHOST_SET_HANDLE_MODE_EXTENDED
	VOS_IOCTL_USBHOST_DEVICE_GET_CONFIGURATION
	VOS_IOCTL_USBHOST_DEVICE_SET_CONFIGURATION
	VOS_IOCTL_USBHOST_DEVICE_GET_COUNT
	VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_VID_PID
	VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS
	VOS_IOCTL_USBHOST_DEVICE_GET_VID_PID
	VOS_IOCTL_USBHOST_DEVICE_GET_CLASS_INFO
	VOS_IOCTL_USBHOST_DEVICE_GET_DEV_INFO
	VOS_IOCTL_USBHOST_DEVICE_GET_CONTROL_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_BULK_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_BULK_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_INT_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_INT_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_ISO_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_ISO_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_NEXT_ENDPOINT_HANDLE
	VOS_IOCTL_USBHOST_DEVICE_GET_ENDPOINT_INFO
	VOS_IOCTL_USBHOST_SET_INTERFACE
	VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_HALT
	VOS_IOCTL_USBHOST_DEVICE_CLEAR_HOST_HALT
	VOS_IOCTL_USBHOST_DEVICE_SET_HOST_HALT
	VOS_IOCTL_USBHOST_DEVICE_TOGGLE_ENPOINT_CARRY
	VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENPOINT_CARRY
	VOS_IOCTL_USBHOST_DEVICE_CLEAR_ENDPOINT_TRANSFER
	VOS_IOCTL_USBHOST_DEVICE_SETUP_TRANSFER
	VOS_IOCTL_USBHOST_HW_GET_FRAME_NUMBER
	VOS_IOCTL_USBHUB_HUB_PORT_COUNT
	VOS_IOCTL_USBHUB_HUB_STATUS
	VOS_IOCTL_USBHUB_PORT_STATUS
	VOS_IOCTL_USBHUB_CLEAR_C_HUB_LOCAL_POWER
	VOS_IOCTL_USBHUB_CLEAR_C_HUB_OVERCURRENT
	VOS_IOCTL_USBHUB_CLEAR_PORT_ENABLE
	VOS_IOCTL_USBHUB_SET_PORT_SUSPEND
	VOS_IOCTL_USBHUB_CLEAR_PORT_SUSPEND
	VOS_IOCTL_USBHUB_SET_PORT_RESET
	VOS_IOCTL_USBHUB_SET_PORT_POWER
	VOS_IOCTL_USBHUB_CLEAR_PORT_POWER
	VOS_IOCTL_USBHUB_CLEAR_C_PORT_CONNECTION
	VOS_IOCTL_USBHUB_CLEAR_C_PORT_ENABLE
	VOS_IOCTL_USBHUB_CLEAR_C_PORT_SUSPEND
	VOS_IOCTL_USBHUB_CLEAR_C_PORT_OVERCURRENT
	VOS_IOCTL_USBHUB_CLEAR_C_PORT_RESET

	usbhost_init()

	USB Slave Driver
	USB Slave Concepts
	USB Slave Configuration
	USB Slave Obtaining an Endpoint Handle
	USB Slave Enumeration
	USB Slave Reading and Writing Data

	USB Slave Return Codes
	USB Slave IOCTL Calls
	VOS_IOCTL_USBSLAVE_GET_STATE
	VOS_IOCTL_USBSLAVE_GET_CONTROL_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MASKS
	VOS_IOCTL_USBSLAVE_WAIT_SETUP_RCVD
	VOS_IOCTL_USBSLAVE_SETUP_TRANSFER
	VOS_IOCTL_USBSLAVE_SET_ADDRESS
	VOS_IOCTL_USBSLAVE_TRANSFER
	VOS_IOCTL_USBSLAVE_ENDPOINT_STALL
	VOS_IOCTL_USBSLAVE_ENDPOINT_CLEAR
	VOS_IOCTL_USBSLAVE_ENDPOINT_STATE
	VOS_IOCTL_USBSLAVE_SET_LOW_SPEED
	VOS_IOCTL_USBSLAVE_CONNECT
	VOS_IOCTL_USBSLAVE_DISCONNECT
	VOS_IOCTL_USBSLAVE_GET_BULK_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_BULK_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_INT_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_INT_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_ISO_IN_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_GET_ISO_OUT_ENDPOINT_HANDLE
	VOS_IOCTL_USBSLAVE_SET_ENDPOINT_MAX_PACKET_SIZE
	VOS_IOCTL_USBSLAVE_WAIT_ON_USB_SUSPEND
	VOS_IOCTL_USBSLAVE_WAIT_ON_USB_RESUME
	VOS_IOCTL_USBSLAVE_ISSUE_REMOTE_WAKEUP

	usbslave_init()

	GPIO Driver
	GPIO Return Codes
	GPIO Driver Read and Write Operations
	GPIO IOCTL Calls
	VOS_IOCTL_GPIO_SET_MASK
	VOS_IOCTL_GPIO_SET_PROG_INT0_PIN
	VOS_IOCTL_GPIO_SET_PROG_INT1_PIN
	VOS_IOCTL_GPIO_SET_PROG_INT2_PIN
	VOS_IOCTL_GPIO_SET_PROG_INT3_PIN
	VOS_IOCTL_GPIO_SET_PROG_INT0_MODE
	VOS_IOCTL_GPIO_SET_PROG_INT1_MODE
	VOS_IOCTL_GPIO_SET_PROG_INT2_MODE
	VOS_IOCTL_GPIO_SET_PROG_INT3_MODE
	VOS_IOCTL_GPIO_WAIT_ON_INT0
	VOS_IOCTL_GPIO_WAIT_ON_INT1
	VOS_IOCTL_GPIO_WAIT_ON_INT2
	VOS_IOCTL_GPIO_WAIT_ON_INT3
	VOS_IOCTL_GPIO_SET_PORT_INT
	VOS_IOCTL_GPIO_WAIT_ON_PORT_INT

	gpio_init()
	GPIO Example

	Timer Driver
	Timer Return Codes
	Timer IOCTL Calls
	VOS_IOCTL_TIMER_SET_TICK_SIZE
	VOS_IOCTL_TIMER_SET_COUNT
	VOS_IOCTL_TIMER_SET_DIRECTION
	VOS_IOCTL_TIMER_SET_MODE
	VOS_IOCTL_TIMER_START
	VOS_IOCTL_TIMER_GET_CURRENT_COUNT
	VOS_IOCTL_TIMER_STOP
	VOS_IOCTL_TIMER_WAIT_ON_COMPLETE

	tmr_init()
	Timer Example

	PWM Driver
	PWM Return Codes
	PWM IOCTL Calls
	VOS_IOCTL_PWM_RESET
	VOS_IOCTL_PWM_ENABLE_OUTPUT
	VOS_IOCTL_PWM_DISABLE_OUTPUT
	VOS_IOCTL_PWM_SET_TRIGGER_MODE
	VOS_IOCTL_PWM_ENABLE_INTERRUPT
	VOS_IOCTL_PWM_DISABLE_INTERRUPT
	VOS_IOCTL_PWM_SET_PRESCALER_VALUE
	VOS_IOCTL_PWM_SET_COUNTER_VALUE
	VOS_IOCTL_PWM_SET_COMPARATOR_VALUE
	VOS_IOCTL_PWM_SET_OUTPUT_TOGGLE_ENABLES
	VOS_IOCTL_PWM_SET_INITIAL_STATE
	VOS_IOCTL_PWM_RESTORE_INITIAL_STATE
	VOS_IOCTL_PWM_SET_NUMBER_OF_CYCLES
	VOS_IOCTL_PWM_WAIT_ON_COMPLETE

	pwm_init()
	PWM Example

	Layered Drivers
	Mass Storage Interface
	Mass Storage Interface Return Codes
	Mass Storage Interface IOCTL Calls
	Mass Storage Interface Read and Write Operations

	USB Host Class Drivers
	BOMS Class Driver
	BOMS Concepts
	BOMS Return Codes
	BOMS Read and Write Operations
	BOMS IOCTL Calls
	BOMS MSI_IOCTL_BOMS_ATTACH
	BOMS MSI_IOCTL_BOMS_DETACH
	BOMS MSI_IOCTL_RESET
	BOMS MSI_IOCTL_GET_MAX_LUN
	BOMS MSI_IOCTL_GET_LUN
	BOMS MSI_IOCTL_SET_LUN
	BOMS MSI_IOCTL_GET_SECTOR_SIZE
	BOMS MSI_IOCTL_GET_DEV_INFO

	boms_init()
	BOMS Examples
	BOMS Attach Example
	BOMS Read and Write Example

	Printer Class Driver
	Printer Class Return Codes
	Printer Class Read and Write Operations
	Printer Class IOCTL Calls
	VOS_IOCTL_USBHOSTPRINTER_ATTACH
	VOS_IOCTL_USBHOSTPRINTER_DETACH
	VOS_IOCTL_USBHOSTPRINTER_GET_DEVICE_ID
	VOS_IOCTL_USBHOSTPRINTER_PORT_STATUS
	VOS_IOCTL_USBHOSTPRINTER_SOFT_RESET

	usbHostPrinter_init()
	USB Host Printer Driver Example

	Communication Device Class Driver
	Communication Device Class Return Codes
	Communication Device Class IOCTL Calls
	VOS_IOCTL_USBHOSTCDC_ATTACH
	VOS_IOCTL_USBHOSTCDC_DETACH
	VOS_IOCTL_USBHOSTCDC_START_POLL
	VOS_IOCTL_USBHOSTCDC_STOP_POLL
	VOS_IOCTL_USBHOSTCDC_GET_LINE_CODING
	VOS_IOCTL_USBHOSTCDC_SET_LINE_CODING
	VOS_IOCTL_USBHOSTCDC_SET_LINE_CONTROL_STATE

	usbHostCDC_init()

	FT232 Device Driver
	FT232 Device Return Codes
	FT232 Device IOCTL Calls
	VOS_IOCTL_USBHOSTFT232_SET_LATENCY
	VOS_IOCTL_USBHOSTFT232_GET_LATENCY
	VOS_IOCTL_USBHOSTFT232_SET_BIT_MODE
	VOS_IOCTL_USBHOSTFT232_GET_BIT_MODE
	VOS_IOCTL_USBHOSTFT232_EEPROM_READ
	VOS_IOCTL_USBHOSTFT232_EEPROM_WRITE
	VOS_IOCTL_USBHOSTFT232_EEPROM_ERASE
	VOS_IOCTL_USBHOSTFT232_ATTACH
	VOS_IOCTL_USBHOSTFT232_DETACH
	VOS_IOCTL_USBHOSTFT232_START_POLL
	VOS_IOCTL_USBHOSTFT232_STOP_POLL

	usbHostFt232_init()
	FT232 Device Example

	Still Image Class Driver
	Still Image Return Codes
	Still Image Read Operations
	Still Image Class Driver IOCTL Calls
	STILLIMAGE_IOCTL_ATTACH
	STILLIMAGE_IOCTL_GET_FIRST_OBJECT
	STILLIMAGE_IOCTL_OPEN_OBJECT
	STILLIMAGE_IOCTL_GET_OBJECT_INFO
	STILLIMAGE_IOCTL_CLOSE_OBJECT
	STILLIMAGE_IOCTL_DELETE_OBJECT
	STILLIMAGE_IOCTL_INITIATE_CAPTURE

	stillimage_init()

	Android Open Accessory Class Driver
	Android Accessory Return Codes
	Android Accessory IOCTL Calls
	VOS_IOCTL_USBHOSTANDROIDACCESSORY_ATTACH
	VOS_IOCTL_USBHOSTANDROIDACCESSORY_DETACH
	VOS_IOCTL_USBHOSTANDROIDACCESSORY_GET_PROTOCOL_REVISION

	usbHostAndroidAccessory_init()
	USB Host Android Accessory Example

	HID Class Driver
	HID Class Return Codes
	HID Class Read and Write Operations
	HID Class IOCTL Calls
	VOS_IOCTL_USBHOSTHID_ATTACH
	VOS_IOCTL_USBHOSTHID_DETACH
	VOS_IOCTL_USBHOSTHID_GET_DESCRIPTOR
	VOS_IOCTL_USBHOSTHID_GET_PROTOCOL
	VOS_IOCTL_USBHOSTHID_SET_PROTOCOL
	VOS_IOCTL_USBHOSTHID_GET_REPORT
	VOS_IOCTL_USBHOSTHID_SET_REPORT
	VOS_IOCTL_USBHOSTHID_GET_IDLE
	VOS_IOCTL_USBHOSTHID_SET_IDLE

	usbHostHID_init()
	HID Driver Example

	USB Slave Class Drivers
	FT232 USB Slave Device
	FT232 Concepts
	Obtaining a Handle
	Attaching
	Reading and Writing

	FT232 USB Slave Device Return Codes
	FT232 USB Slave Device IOCTL Calls
	VOS_IOCTL_USBSLAVEFT232_ATTACH
	VOS_IOCTL_USBSLAVEFT232_DETACH
	VOS_IOCTL_USBSLAVEFT232_SET_LATENCY
	VOS_IOCTL_USBSLAVEFT232_SET_DESCRIPTORS

	usbSlaveFt232_init()

	SPI Peripheral Drivers
	ADC (MCP3004/MCP3008) Driver
	ADC_MCP3008 Return Codes
	ADC_MCP3008 IOCTL Calls
	VOS_IOCTL_ADC_MCP3008_ATTACH
	VOS_IOCTL_ADC_MCP3008_DETACH
	VOS_IOCTL_ADC_MCP3008_READ_CHANNEL

	adc_mcp3008_init()

	SD Card Driver
	SD Card Return Codes
	SD Card Read and Write Operations
	SD Card IOCTL Calls
	MSI_IOCTL_SD_CARD_ATTACH
	MSI_IOCTL_SD_CARD_DETACH
	MSI_IOCTL_SD_CARD_INIT
	MSI_IOCTL_SD_GET_CARD_TYPE
	MSI_IOCTL_SD_CARD_DETECT
	MSI_IOCTL_SD_CARD_WAIT_INSERT
	MSI_IOCTL_SD_WRITE_PROTECT

	sd_init()
	SD Card Example

	RTC (PCF2123) Driver
	RTC Return Codes
	RTC IOCTL Calls
	RTC_IOCTL_ATTACH
	RTC_IOCTL_DETACH
	RTC_IOCTL_RESET
	RTC_IOCTL_SET_TIME
	RTC_IOCTL_GET_TIME
	RTC_IOCTL_GET_TIME_MODE
	RTC_IOCTL_SET_TIME_MODE
	RTC_IOCTL_CHECK_CLK_RUNNING
	RTC_IOCTL_SET_ALARM
	RTC_IOCTL_GET_ALARM
	RTC_IOCTL_CANCEL_ALARM
	RTC_IOCTL_START_COUNTDOWN
	RTC_IOCTL_CANCEL_COUNTDOWN
	RTC_IOCTL_START_MIN_INTERRUPT
	RTC_IOCTL_STOP_MIN_INTERRUPT
	RTC_IOCTL_START_SEC_INTERRUPT
	RTC_IOCTL_STOP_SEC_INTERRUPT

	rtc_init()

	Ethernet Driver
	Ethernet Return Codes
	Ethernet IOCTL Calls
	VOS_IOCTL_ETHERNET_W5100_INIT
	VOS_IOCTL_ETHERNET_SET_GATEWAY_IP
	VOS_IOCTL_ETHERNET_GET_GATEWAY_IP
	VOS_IOCTL_ETHERNET_SET_SUBNET_MASK
	VOS_IOCTL_ETHERNET_GET_SUBNET_MASK
	VOS_IOCTL_ETHERNET_SET_MAC_ADDRESS
	VOS_IOCTL_ETHERNET_GET_MAC_ADDRESS
	VOS_IOCTL_ETHERNET_SET_IP_ADDRESS
	VOS_IOCTL_ETHERNET_GET_IP_ADDRESS
	VOS_IOCTL_ETHERNET_SET_RETRANSMISSION_TIME
	VOS_IOCTL_ETHERNET_SET_RETRANSMISSION_COUNT
	VOS_IOCTL_ETHERNET_SOCKET
	VOS_IOCTL_ETHERNET_CLOSE
	VOS_IOCTL_ETHERNET_LISTEN
	VOS_IOCTL_ETHERNET_CONNECT
	VOS_IOCTL_ETHERNET_DISCONNECT
	VOS_IOCTL_ETHERNET_SEND
	VOS_IOCTL_ETHERNET_RECV
	VOS_IOCTL_ETHERNET_SENDTO
	VOS_IOCTL_ETHERNET_RECVFROM
	VOS_IOCTL_ETHERNET_GET_SOCK_STATUS
	VOS_IOCTL_ETHERNET_GET_TX_FREE_SIZE
	VOS_IOCTL_ETHERNET_GET_RX_RCVD_SIZE
	VOS_IOCTL_ETHERNET_SET_INTERRUPT_MASK
	VOS_IOCTL_ETHERNET_GET_INTERRUPT_TYPE
	VOS_IOCTL_ETHERNET_CLEAR_INTERRUPT_REG
	VOS_IOCTL_ETHERNET_ATTACH_SPI_M_HANDLE
	VOS_IOCTL_ETHERNET_DETACH_SPI_M_HANDLE

	Ethernet_init

	File Systems
	FAT File System
	FAT File System Concepts
	FAT File System Performance Considerations
	FAT File System Restrictions
	FAT File System Handle
	FAT File Handles
	FAT File System Types
	FAT File System Date and Times

	FAT Return Codes
	FAT File System Driver
	FAT Driver Read and Write Operations
	FAT Driver IOCTL Calls
	FAT_IOCTL_FS_ATTACH
	FAT_IOCTL_FS_DETACH
	FAT_IOCTL_FS_INFO
	FAT_IOCTL_FILE_OPEN
	FAT_IOCTL_FILE_CLOSE
	FAT_IOCTL_FILE_SEEK
	FAT_IOCTL_FILE_SETPOS
	FAT_IOCTL_FILE_TELL
	FAT_IOCTL_FILE_REWIND
	FAT_IOCTL_FILE_TRUNCATE
	FAT_IOCTL_FILE_FLUSH
	FAT_IOCTL_FILE_DELETE
	FAT_IOCTL_FILE_RENAME
	FAT_IOCTL_FILE_MOD
	FAT_IOCTL_DIR_FIND
	FAT_IOCTL_DIR_FIND_FIRST
	FAT_IOCTL_DIR_FIND_NEXT
	FAT_IOCTL_DIR_CD
	FAT_IOCTL_DIR_MK
	FAT_IOCTL_DIR_SIZE
	FAT_IOCTL_DIR_GETTIME
	FAT_IOCTL_DIR_SETTIME
	FAT_IOCTL_DIR_ISEMPTY
	FAT_IOCTL_DIR_ISVALID
	FAT_IOCTL_DIR_ISVOLUMELABEL
	FAT_IOCTL_DIR_ISREADONLY
	FAT_IOCTL_DIR_ISFILE
	FAT_IOCTL_DIR_ISDIRECTORY

	fatdrv_init()

	FAT File System API
	fat_init()
	fat_open()
	fat_close()
	fat_freeSpace()
	fat_capacity()
	fat_bytesPerCluster()
	fat_bytesPerSector()
	fat_getFSType()
	fat_getVolumeID
	fat_getVolumeLabel()
	fat_fileOpen()
	fat_fileClose()
	fat_fileSeek()
	fat_fileSetPos()
	fat_fileTell()
	fat_fileRewind()
	fat_fileTruncate()
	fat_fileFlush()
	fat_fileDelete()
	fat_fileRename()
	fat_fileMod()
	fat_time()
	fat_dirTableFind()
	fat_dirTableFindFirst()
	fat_dirTableFindNext()
	fat_dirChangeDir()
	fat_dirCreateDir()
	fat_dirEntrySize()
	fat_dirEntryTime()
	fat_dirDirIsEmpty()
	fat_dirEntryIsValid()
	fat_dirEntryIsVolumeID()
	fat_dirEntryIsReadOnly()
	fat_dirEntryIsFile()
	fat_dirEntryIsDirectory()
	fat_fileRead()
	fat_fileWrite()
	fat_fileCopy()
	fat_dirEntryName()

	APIs
	Firmware Update API
	FirmwareUpdateFATFileSystem
	FirmwareUpdateFATFile
	FirmwareUpdateFATFileFeedback

	Flash Access API
	flash_writePage()
	flash_readPage()

	FTDI Libraries
	ctype
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit

	stdio
	fsAttach
	stdioAttach
	stdinAttach
	stdoutAttach
	stderrAttach
	printf
	fopen
	fread
	fwrite
	fclose
	fflush
	feof
	ftell
	fprintf
	stdout
	stdin
	stderr
	sprintf
	remove
	rename

	unistd
	chdir

	stdlib
	abs
	strtol
	atol
	atoi
	malloc
	calloc
	free

	string
	memcpy
	memset
	strcmp
	strncmp
	strcpy
	strncpy
	strcat
	strlen

	errno
	errno

	Sample Firmware Applications
	Sample Firmware Overview
	General Samples
	Template Sample
	GPIOKitt Sample
	PWMBreathe Sample
	Philosophers Sample
	Runtime Sample
	HelloWorld Sample
	RTC Sample

	USB Host Samples
	StillImageApp Sample
	USBHostGeneric Sample
	USBHostGPSLogger Sample
	USBHostHID Sample
	USBHostHID2 Sample
	USBMic Sample

	USB Slave Samples
	USBSlaveFT232App Sample

	Firmware Samples
	VNC1L Firmware
	V2DAP Firmware
	V2DPS Firmware

	Vinco Libraries
	Before using the Vinco libraries
	Data types in Vinco libraries
	Vinco Application Wizard
	main.c and vinco.h
	Vinco sketch format

	Digital I/O Library
	pinMode()
	digitalWrite()
	digitalRead()
	Port Access APIs
	portMode()
	portWrite()
	portRead()

	Using on-board LEDs

	Time Library
	millis()
	micros()
	delay()
	delayMicroseconds48Mhz()
	delayMicroseconds24Mhz()
	delayMicroseconds12Mhz()

	Serial Library
	begin()
	end()
	available()
	read()
	write()
	flush()
	print()
	println()
	printstr()
	Notes on using the Serial library
	Porting Guide
	Getting the setup ready

	Interrupts Library
	interrupts()
	noInterrupts()
	attachInterrupt()
	detachInterrupt()

	Analog Library
	analogRead()
	analogWrite()
	Notes on usage of the Analog I/O library
	Reference voltage
	ADC converter resolution
	PWM output

	Ethernet Library
	Ethernet core functions
	beginMacIp()
	beginMacIpGw()
	beginMacIpGwSn()

	Server functions
	begin()
	available()
	writeBuf()
	writeStr()
	writeByte()

	Client functions
	clientIp()
	connect()
	connected()
	writeBuf()
	writeStr()
	writeByte()
	available()
	read()
	flush()
	stop()

	Udp functions
	begin()
	send()
	sendString()
	read()
	available()

	Porting guide from Arduino Ethernet library
	TCP client
	TCP server

	MP3 Library
	begin()
	setVolume()
	setBass()
	setTreble()
	send()
	sent()
	cancel()
	softReset()
	hardReset()

	USB Host Printer Library
	open()
	getCapability()
	getPortStatus()
	softReset()
	write()
	close()

	USB Host FT232 Library
	open()
	reset()
	getRXStatus()
	getTXStatus()
	getModemStatus()
	getLineStatus()
	setBaudRate()
	setFlowControl()
	setDataBits()
	setStopBits()
	setParity()
	setRTS()
	clearRTS()
	setDTR()
	clearDTR()
	setBreakOn()
	setBreakOff()
	setXON()
	setXOFF()
	setLatency()
	getLatency()
	setBitMode()
	getBitMode()
	readEEPROM()
	writeEEPROM()
	startPoll()
	stopPoll()
	write()
	read()
	close()

	USBSlaveFT232
	open()
	getRXStatus()
	setLatency()
	setDescriptors()
	setOutTransferSize()
	read()
	write()
	close()

	USB Host HID Library
	open()
	getDescriptor()
	getReport()
	setReport()
	getProtocol()
	setProtocol()
	getIdle()
	setIdle()
	read()
	close()

	Contact Information
	Revision History

