

Ultra High Precision Z-Bulk Metal[®] Foil Technology Low Profile Conformally Coated Voltage Divider Resistor with TCR Tracking to <u>0.1 ppm/°C</u>, Power Coefficient Tracking of <u>5 ppm</u> at Rated Power, and Tolerance Match to <u>0.01 %</u> (100 ppm)

APPLICATIONS

- Instrumentation amplifiers
- Bridge networks
- Differential amplifiers
- Vin Vout

- MilitarySpace
- Medical
- Automatic test equipment
- Down-hole (high temperature)

TABLE 1A		VSH144Z CATIONS	
RESISTANCE VALUES	ABSOLUTE TOLERANCE	ABSOLUTE TCR (- 55 °C to + 125 °C, + 25 °C ref TYPICAL AND MAX. SPREAD	
\geq 500 Ω to 20 k Ω	± 0.01 %	± 0.2 ppm/°C ± 2.5 ppm/°C	
100 Ω to < 500 Ω	± 0.02 %	± 0.2 ppm/ 0 ± 2.5 ppm/ 0	

TABLE 1B - MODEL VSH144Z SPECIFICATIONS						
RESISTANCE RATIO	TOLERANCE MATCH	TCR TRACKING MAX.				
1:1	0.01 %	0.5 ppm/°C				
> 1:1 to 4:1	0.01 %	0.75 ppm/°C				
> 4:1 to 10:1	0.02 %	1.5 ppm/°C				
> 10:1	0.02 %	2.0 ppm/°C				

FEATURES

 Temperature coefficient of resistance (TCR): absolute: ± 0.05 ppm/°C typical (0 °C to + 60 °C) ± 0.2 ppm/°C typical (- 55 °C to + 125 °C, + 25 °C ref.)

RoHS

COMPLIANT

tracking: 0.1 ppm/°C typical

- Tolerance: absolute and matching to 0.01 % (100 ppm)
- Power coefficient tracking "∆R due to self heating": 5 ppm at rated power
- \bullet Power rating: 0.2 W at 70 °C, for the entire resistive element R1 and R2, divided proportionally between the two values
- Load life ratio stability: < 0.01 % (100 ppm) 0.2 W at 70 °C for 2000 h
- Maximum working voltage: 200 V
- Resistance range: 100R to 20K per resistive element
- Vishay Foil resistors are not restricted to standard values/ratios; specific "as requested" values/ratios can be supplied at no extra cost or delivery (e.g. 1K2345 vs. 1K)
- Electrostatic discharge (ESD) up to 25 000 V
- Non-inductive, non-capacitive design
- Rise time: 1 ns effectively no ringing
- Current noise: 0.010 µV_{RMS}/V of applied voltage (< 40 dB)
- Thermal EMF: 0.05 μV/°C typical
- Voltage coefficient: < 0.1 ppm/V
- Non-inductive: < 0.08 µH
- Non hot spot design
- Thermal stabilization time < 1 s (nominal value achieved within 10 ppm of steady state value)
- Terminal finish: lead (Pb)-free or tin/lead alloy
- Compliant to RoHS directive 2002/95/EC
- Prototype quantities available in just 5 working days or sooner. For more information, please contact <u>foil@vpgsensors.com</u>
- For better performances please contact us

* Pb containing terminations are not RoHS compliant, exemptions may apply

INTRODUCTION

The VSH144Z voltage divider is based on the latest generation of Bulk Metal[®] Z-Foil technology which is the most recommended solution for ultra high precision, stability and reliable voltage division or anywhere else that requires two resistors to maintain a stable ratio under power and throughout all application variables.

Why are extremely low TCR resistors required?

This is a proper question when evaluating system cost. The answers are as numerous as the system in which they are installed but a few examples may provide insight:

- 1) Commercial broadcast equipment heats up through the day and requires constant manual adjustment through the day for proper signal adjustment.
- 2) Satellites in synchronous orbit rotate through temperature extremes.
- A fighter jet resting on the 115° desert floor takes off and reaches altitude at - 60° in less than two minutes.
- 4) A system that requires fast response time in order to produce the required signal with minimum stabilization time.

Resistors may be selected for TCR tracking but that is only useful when the resistors are operating at the same temperature. If the resistors are operating at different temperatures because of differential self-heating, or due to locally-different thermal influence from different adjacent components, or because they are operating in different regions of the equipment, the ratios change proportional to the differences in operating temperature times and the absolute TCR in addition to differences in TCR tracking ratios. Additionally, when resistors within a set have different absolute TCR's (individual TCR's - not relative or tracking TCR), the ratios change even more due to the differential self-heating as well as to differential ambient temperatures:

 Δ ratio = (TCR track x Δ temp 1) + (absolute TCR x Δ temp 2) where Δ temp 1 is the change of ambient temperature and Δ temp 2 is the temperature difference between two resistors due to differential self-heating.

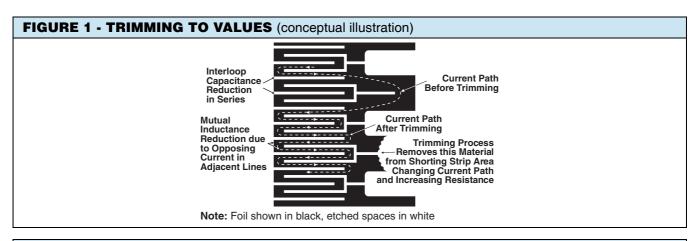
Differential self-heating can occur, for example, when the same current flows through resistors of different resistance values. The construction of the VSH144Z keeps both resistors at the same temperature regardless of resistance value or differential power.

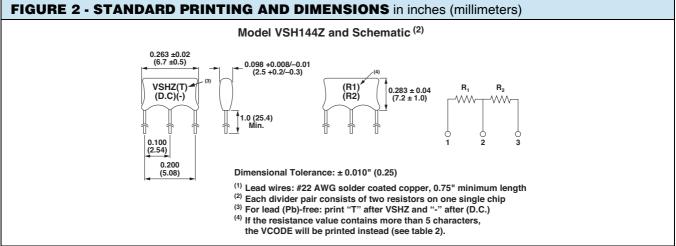
For best performance in such applications, low absolute TCRs are required.

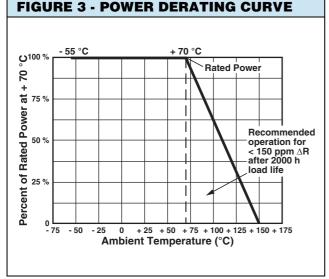
What is TCR tracking and why it is important?

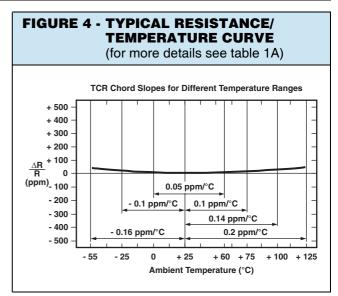
TCR tracking is a measure of the uniformity of the thermally-induced resistance changes in two or more resistors. Resistors "track" closely when their individual TCRs are close, and this is a measure of how closely these resistors will maintain their initial ratios over various temperature changes. Some resistors may increase in value with an increase in temperature (positive TCR) while others will decrease in value with an increase in temperature (negative TCR), or, they may not change in value at the same rate (differential TCR). Other temperature effects, such as self heating due to the application of power can add to the ambient temperature effects. An example of these effects can be seen where two resistors with different TCR characteristics are used around an operation amplifier. The amplification ratio will be affected by the differential TCR of the resistors and will be compounded by the differential self heating effects of the I²R differences of the feedback VS the input resistor.

Good design practice requires fundamentally low TCR networks in this application since this would minimize both varying temperature and self heating effects.


This could not be accomplished with high TCR resistors, even with good tracking.

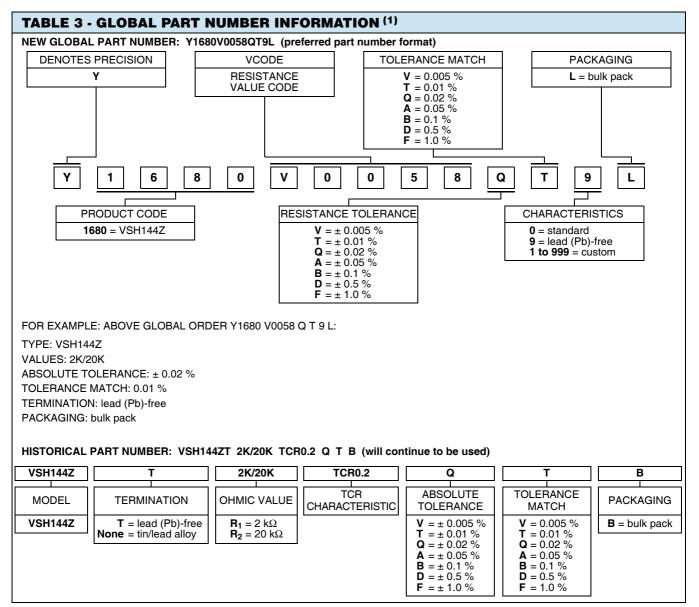

What is the reason for such excellent stability?


The secret of Bulk Metal Z-Foil technology's benchmark stability lies in the fact that it retains the inherent metallurgical stability of the alloy from which it is made: the alloy is not melted and drawn as it is in the manufacture of wirewound resistors, nor is it evaporated and re-deposited or sputtered as it is in thin-film resistors. This underlying metallurgical stability is preserved throughout the manufacturing processes by preventing the introduction of additional stresses into the final component.


Our application engineering department is available to advise and make recommendations. For non-standard technical requirements and special applications. Please contact <u>foil@vpgsensors.com</u>.

Note:

Power is divided proportionally between the 2 values



		VSH144	Z RATIOS		
VCODES	R ₁	R ₂	VCODES	R ₁	R ₂
V0009	20K	20K	V0058	2К	20K
V0010	20K	10K	V0030	2К	18K
V0100	20K	2К	V0029	2К	4K
V0055	19K4	9K7	V0059	2К	2K
V0223	17K5	20K	V0103	2К	ЗК
V0097	15K	15K	V0154	1K5	ЗК
V0001	10K	10K	V0032	1K	16K
V0042	10K	8K323	V0121	1K	2K
V0006	10K	2K	V0004	1K	1K
V0166	10K	15K	V0379	1K	7K
V0226	9К	10K	V0374	800R	800R
V0003	9К	1K	V0022	511R	16K2
V0013	8К	16K	V0091	500R	500R
V0107	6К	20K	V0162	500R	15K
V0014	6К	7K	V0378	500R	4K5
V0160	6К	6K	V0061	300R	300R
V0159	5K5	7K7	V0088	100R	100R
V0005	5K	10K	V0380	100R	15K
V0002	5K	5K	V0375	100R	12K3
V0373	4K	12K	V0381	100R	50R
V0026	зк	19K2	V0377	50R	28K
V0156	ЗК	6K	V0376	35R	20K
V0158	2K7	10K	_	-	_

Note

• A combination of these values is also available in reverse order.

Note

⁽¹⁾ For non-standard requests, please contact application engineering

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.